Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis

Abstract

Protein serine-threonine kinase casein kinase II (CK2) is involved in a myriad of cellular processes including cell growth and proliferation through its phosphorylation of hundreds of substrates, yet how CK2 function is regulated is poorly understood. Here we report that the CK2 catalytic subunit CK2α is modified by O-linked β-N-acetyl-glucosamine (O-GlcNAc) on Ser347, proximal to a cyclin-dependent kinase phosphorylation site (Thr344). We use protein semisynthesis to show that phosphorylation of Thr344 increases the cellular stability of CK2α by strengthening its interaction with Pin1, whereas glycosylation of Ser347 seems to be antagonistic to Thr344 phosphorylation and permissive to proteasomal degradation. By performing kinase assays with site-specifically phospho- and glyco-modified CK2α in combination with CK2β and Pin1 binding partners on human protein microarrays, we show that the kinase substrate selectivity of CK2 is modulated by these specific post-translational modifications. This study suggests how a promiscuous protein kinase can be regulated at multiple levels to achieve particular biological outputs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation of semisynthetic CK2α proteins.
Figure 2: Cellular stability of CK2α.
Figure 3: CK2 interactions with Pin1.
Figure 4: Role of O-GlcNAc modification in CK2α.
Figure 5: Substrate selectivity for CK2.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Pagano, M.A., Cesaro, L., Meggio, F. & Pinna, L.A. Protein kinase CK2: a newcomer in the 'druggable kinome'. Biochem. Soc. Trans. 34, 1303–1306 (2006).

    Article  CAS  Google Scholar 

  2. Pinna, L.A. Protein kinase CK2: a challenge to canons. J. Cell Sci. 115, 3873–3878 (2002).

    Article  CAS  Google Scholar 

  3. Salvi, M., Sarno, S., Cesaro, L., Nakamura, H. & Pinna, L.A. Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim. Biophys. Acta 1793, 847–859 (2009).

    Article  CAS  Google Scholar 

  4. Niefind, K., Guerra, B., Ermakowa, I. & Issinger, O.G. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J. 20, 5320–5331 (2001).

    Article  CAS  Google Scholar 

  5. Sarno, S. et al. Cooperative modulation of protein kinase CK2 by separate domains of its regulatory beta-subunit. Biochemistry 39, 12324–12329 (2000).

    Article  CAS  Google Scholar 

  6. Meggio, F., Boldyreff, B., Marin, O., Pinna, L.A. & Issinger, O.G. Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme. Eur. J. Biochem. 204, 293–297 (1992).

    Article  CAS  Google Scholar 

  7. Marin, O., Meggio, F., Boldyreff, B., Issinger, O.G. & Pinna, L.A. Dissection of the dual function of the beta-subunit of protein kinase CK2 ('casein kinase-2'): a synthetic peptide reproducing the carboxyl-terminal domain mimicks the positive but not the negative effects of the whole protein. FEBS Lett. 363, 111–114 (1995).

    Article  CAS  Google Scholar 

  8. Litchfield, D.W., Luscher, B., Lozeman, F.J., Eisenman, R.N. & Krebs, E.G. Phosphorylation of casein kinase II by p34cdc2 in vitro and at mitosis. J. Biol. Chem. 267, 13943–13951 (1992).

    CAS  PubMed  Google Scholar 

  9. Bosc, D.G., Slominski, E., Sichler, C. & Litchfield, D.W. Phosphorylation of casein kinase II by p34cdc2. Identification of phosphorylation sites using phosphorylation site mutants in vitro. J. Biol. Chem. 270, 25872–25878 (1995).

    Article  CAS  Google Scholar 

  10. Hart, G.W., Housley, M.P. & Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).

    Article  CAS  Google Scholar 

  11. Lazarus, M.B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011).

    Article  CAS  Google Scholar 

  12. Luo, B. et al. Chronic hexosamine flux stimulates fatty acid oxidation by activating AMP-activated protein kinase in adipocytes. J. Biol. Chem. 282, 7172–7180 (2007).

    Article  CAS  Google Scholar 

  13. Zeidan, Q. & Hart, G.W. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J. Cell Sci. 123, 13–22 (2010).

    Article  CAS  Google Scholar 

  14. Lubas, W.A. & Hanover, J.A. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J. Biol. Chem. 275, 10983–10988 (2000).

    Article  CAS  Google Scholar 

  15. Vila-Perelló, M. & Muir, T.W. Biological applications of protein splicing. Cell 143, 191–200 (2010).

    Article  Google Scholar 

  16. Muir, T.W., Sondhi, D. & Cole, P.A. Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA 95, 6705–6710 (1998).

    Article  CAS  Google Scholar 

  17. Piontek, C. et al. Semisynthesis of a homogeneous glycoprotein enzyme: ribonuclease C: part 1. Angew. Chem. Int. Edn Engl. 48, 1936–1940 (2009).

    Article  CAS  Google Scholar 

  18. Zheng, W. et al. Cellular stability of serotonin N-acetyltransferase conferred by phosphonodifluoromethylene alanine (Pfa) substitution for Ser-205. J. Biol. Chem. 280, 10462–10467 (2005).

    Article  CAS  Google Scholar 

  19. Ohnishi, Y., Ichikawa, M. & Ichikawa, Y. Facile synthesis of N-Fmoc-serine-S-GlcNAc: a potential molecular probe for the functional study of O-GlcNAc. Bioorg. Med. Chem. Lett. 10, 1289–1291 (2000).

    Article  CAS  Google Scholar 

  20. Marin, O., Meggio, F. & Pinna, L.A. Design and synthesis of two new peptide substrates for the specific and sensitive monitoring of casein kinases-1 and -2. Biochem. Biophys. Res. Commun. 198, 898–905 (1994).

    Article  CAS  Google Scholar 

  21. Liu, Q., Huang, S.S. & Huang, J.S. Kinase activity of the type V transforming growth factor beta receptor. J. Biol. Chem. 269, 9221–9226 (1994).

    CAS  PubMed  Google Scholar 

  22. Loizou, J.I. et al. The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell 117, 17–28 (2004).

    Article  CAS  Google Scholar 

  23. Tiganis, T., House, C.M. & Kemp, B.E. Protein kinase CK2: biphasic kinetics with peptide substrates. Arch. Biochem. Biophys. 325, 289–294 (1996).

    Article  CAS  Google Scholar 

  24. Sarno, S. et al. Mutational analysis of residues implicated in the interaction between protein kinase CK2 and peptide substrates. Biochemistry 36, 11717–11724 (1997).

    Article  CAS  Google Scholar 

  25. Salvi, M. et al. Discrimination between the activity of protein kinase CK2 holoenzyme and its catalytic subunits. FEBS Lett. 580, 3948–3952 (2006).

    Article  CAS  Google Scholar 

  26. Sarno, S., Marin, O., Ghisellini, P., Meggio, F. & Pinna, L.A. Biochemical evidence that the N-terminal segments of the alpha subunit and the beta subunit play interchangeable roles in the activation of protein kinase CK2. FEBS Lett. 441, 29–33 (1998).

    Article  CAS  Google Scholar 

  27. Homma, M.K. & Homma, Y. Cell cycle and activation of CK2. Mol. Cell. Biochem. 316, 49–55 (2008).

    Article  CAS  Google Scholar 

  28. Macauley, M.S., Stubbs, K.A. & Vocadlo, D.J. O-GlcNAcase catalyzes cleavage of thioglycosides without general acid catalysis. J. Am. Chem. Soc. 127, 17202–17203 (2005).

    Article  CAS  Google Scholar 

  29. Senderowicz, A.M. Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. Invest. New Drugs 17, 313–320 (1999).

    Article  CAS  Google Scholar 

  30. Gussio, R. et al. Structure-based design modifications of the paullone molecular scaffold for cyclin-dependent kinase inhibition. Anticancer Drug Des. 15, 53–66 (2000).

    CAS  PubMed  Google Scholar 

  31. Shapiro, G.I., Koestner, D.A., Matranga, C.B. & Rollins, B.J. Flavopiridol induces cell cycle arrest and p53-independent apoptosis in non-small cell lung cancer cell lines. Clin. Cancer Res. 5, 2925–2938 (1999).

    CAS  PubMed  Google Scholar 

  32. Fischer, P.M. & Lane, D.P. Inhibitors of cyclin-dependent kinases as anti-cancer therapeutics. Curr. Med. Chem. 7, 1213–1245 (2000).

    Article  CAS  Google Scholar 

  33. Bosc, D.G., Luscher, B. & Litchfield, D.W. Expression and regulation of protein kinase CK2 during the cell cycle. Mol. Cell. Biochem. 191, 213–222 (1999).

    Article  CAS  Google Scholar 

  34. Messenger, M.M. et al. Interactions between protein kinase CK2 and Pin1. Evidence for phosphorylation-dependent interactions. J. Biol. Chem. 277, 23054–23064 (2002).

    Article  CAS  Google Scholar 

  35. Ranganathan, R., Lu, K.P., Hunter, T. & Noel, J.P. Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 89, 875–886 (1997).

    Article  CAS  Google Scholar 

  36. Shen, M., Stukenberg, P.T., Kirschner, M.W. & Lu, K.P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev. 12, 706–720 (1998).

    Article  CAS  Google Scholar 

  37. Yuzwa, S.A. et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol. 4, 483–490 (2008).

    Article  CAS  Google Scholar 

  38. Hu, S. et al. Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139, 610–622 (2009).

    Article  CAS  Google Scholar 

  39. Meggio, F. & Pinna, L.A. One-thousand-and-one substrates of protein kinase CK2? FASEB J. 17, 349–368 (2003).

    Article  CAS  Google Scholar 

  40. Moretto-Zita, M. et al. Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc. Natl. Acad. Sci. USA 107, 13312–13317 (2010).

    Article  CAS  Google Scholar 

  41. Zhou, W. et al. Pin1 catalyzes conformational changes of Thr-187 in p27Kip1 and mediates its stability through a polyubiquitination process. J. Biol. Chem. 284, 23980–23988 (2009).

    Article  CAS  Google Scholar 

  42. Siepe, D. & Jentsch, S. Prolyl isomerase Pin1 acts as a switch to control the degree of substrate ubiquitylation. Nat. Cell Biol. 11, 967–972 (2009).

    Article  CAS  Google Scholar 

  43. Mahoney, S.J., Dempsey, J.M. & Blenis, J. Cell signaling in protein synthesis ribosome biogenesis and translation initiation and elongation. Prog. Mol. Biol. Transl. Sci. 90, 53–107 (2009).

    Article  CAS  Google Scholar 

  44. Canton, D.A. & Litchfield, D.W. The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal 18, 267–275 (2006).

    Article  CAS  Google Scholar 

  45. Cory, G.O., Cramer, R., Blanchoin, L. & Ridley, A.J. Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP. Mol. Cell 11, 1229–1239 (2003).

    Article  CAS  Google Scholar 

  46. Shen, H.H., Huang, A.M., Hoheisel, J. & Tsai, S.F. Identification and characterization of a SET/NAP protein encoded by a brain-specific gene, MB20. Genomics 71, 21–33 (2001).

    Article  CAS  Google Scholar 

  47. Choudhary, C. & Mann, M. Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 11, 427–439 (2010).

    Article  CAS  Google Scholar 

  48. Qiao, Y., Molina, H., Pandey, A., Zhang, J. & Cole, P.A. Chemical rescue of a mutant enzyme in living cells. Science 311, 1293–1297 (2006).

    Article  CAS  Google Scholar 

  49. Comer, F.I., Vosseller, K., Wells, L., Accavitti, M.A. & Hart, G.W. Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal. Biochem. 293, 169–177 (2001).

    Article  CAS  Google Scholar 

  50. Huang, R. et al. Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation. J. Am. Chem. Soc. 132, 9986–9987 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Schwarzer, L. Szewczuk, S. Taverna and Y. Zhang as well as the Johns Hopkins University School of Medicine Microscope Facility for advice and assistance and the US National Institutes of Health (CA42486, GM62437, RR020839) for support.

Author information

Authors and Affiliations

Authors

Contributions

P.A.C., M.K.T., G.W.H., H.Z., Y.I., C.G., Y.L.J. and J.Q. conceived of the research and planned the experiments. M.K.T., H.-S.R., Z. X., C.G., Y.L.J., N.Z., G.Y. and T.M. performed the experiments. All authors contributed to data analysis and interpretation. J.C.C., F.A.E., J.S.J. and S.B. prepared key reagents. M.K.T. and P.A.C. wrote the manuscript with the support of all of the authors.

Corresponding author

Correspondence to Philip A Cole.

Ethics declarations

Competing interests

G.W.H. receives royalties for the sale of GlcNAc-specific antibody.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 4496 kb)

Supplementary Data Set 1

Excel file with the relative signal intensities for individual protein substrates for each of the CK2 enzyme conditions are shown. (XLS 8263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarrant, M., Rho, HS., Xie, Z. et al. Regulation of CK2 by phosphorylation and O-GlcNAcylation revealed by semisynthesis. Nat Chem Biol 8, 262–269 (2012). https://doi.org/10.1038/nchembio.771

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing