Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatiotemporal resolution of the Ntla transcriptome in axial mesoderm development

Abstract

Transcription factors have diverse roles during embryonic development, combinatorially controlling cellular states in a spatially and temporally defined manner. Resolving the dynamic transcriptional profiles that underlie these patterning processes is essential for understanding embryogenesis at the molecular level. Here we show how temporal, tissue-specific changes in embryonic transcription factor function can be discerned by integrating caged morpholino oligonucleotides with photoactivatable fluorophores, fluorescence-activated cell sorting and microarray technologies. As a proof of principle, we have dynamically profiled No tail a (Ntla)-dependent genes at different stages of axial mesoderm development in zebrafish, discovering discrete sets of transcripts that are coincident with either notochord cell fate commitment or differentiation. Our studies reveal new regulators of notochord development and the sequential activation of distinct transcriptomes within a cell lineage by a single transcriptional factor and demonstrate how optically controlled chemical tools can dissect developmental processes with spatiotemporal precision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notochord development is promoted by distinct Ntla transcriptomes.
Figure 2: Embryonic expression of Ntla-dependent genes.
Figure 3: Embryonic function of Ntla-dependent genes.
Figure 4: Temporal dynamics of Ntla-dependent mesoderm development.

Similar content being viewed by others

References

  1. Ouyang, X. & Chen, J.K. Synthetic strategies for studying embryonic development. Chem. Biol. 17, 590–606 (2010).

    Article  CAS  Google Scholar 

  2. Shestopalov, I.A., Sinha, S. & Chen, J.K. Light-controlled gene silencing in zebrafish embryos. Nat. Chem. Biol. 3, 650–651 (2007).

    Article  CAS  Google Scholar 

  3. Ouyang, X. et al. Versatile synthesis and rational design of caged morpholinos. J. Am. Chem. Soc. 131, 13255–13269 (2009).

    Article  CAS  Google Scholar 

  4. Tang, X., Maegawa, S., Weinberg, E.S. & Dmochowski, I.J. Regulating gene expression in zebrafish embryos using light-activated, negatively charged peptide nucleic acids. J. Am. Chem. Soc. 129, 11000–11001 (2007).

    Article  CAS  Google Scholar 

  5. Tomasini, A.J., Schuler, A.D., Zebala, J.A. & Mayer, A.N. PhotoMorphs: a novel light-activated reagent for controlling gene expression in zebrafish. Genesis 47, 736–743 (2009).

    Article  CAS  Google Scholar 

  6. Deiters, A. et al. Photocaged morpholino oligomers for the light-regulation of gene function in zebrafish and Xenopus embryos. J. Am. Chem. Soc. 132, 15644–15650 (2010).

    Article  CAS  Google Scholar 

  7. Schulte-Merker, S., Ho, R.K., Herrmann, B.G. & Nusslein-Volhard, C. The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116, 1021–1032 (1992).

    CAS  Google Scholar 

  8. Halpern, M.E., Ho, R.K., Walker, C. & Kimmel, C.B. Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75, 99–111 (1993).

    Article  CAS  Google Scholar 

  9. Schulte-Merker, S., van Eeden, F.J., Halpern, M.E., Kimmel, C.B. & Nusslein-Volhard, C. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–1015 (1994).

    CAS  PubMed  Google Scholar 

  10. Halpern, M.E. et al. Genetic interactions in zebrafish midline development. Dev. Biol. 187, 154–170 (1997).

    Article  CAS  Google Scholar 

  11. Amacher, S.L., Draper, B.W., Summers, B.R. & Kimmel, C.B. The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate. Development 129, 3311–3323 (2002).

    CAS  Google Scholar 

  12. Melby, A.E., Warga, R.M. & Kimmel, C.B. Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development 122, 2225–2237 (1996).

    CAS  Google Scholar 

  13. Garnett, A.T. et al. Identification of direct T-box target genes in the developing zebrafish mesoderm. Development 136, 749–760 (2009).

    Article  CAS  Google Scholar 

  14. Goering, L.M. et al. An interacting network of T-box genes directs gene expression and fate in the zebrafish mesoderm. Proc. Natl. Acad. Sci. USA 100, 9410–9415 (2003).

    Article  CAS  Google Scholar 

  15. Morley, R.H. et al. A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proc. Natl. Acad. Sci. USA 106, 3829–3834 (2009).

    Article  CAS  Google Scholar 

  16. Talbot, W.S. et al. A homeobox gene essential for zebrafish notochord development. Nature 378, 150–157 (1995).

    Article  CAS  Google Scholar 

  17. Ochi, H., Hans, S. & Westerfield, M. Smarcd3 regulates the timing of zebrafish myogenesis onset. J. Biol. Chem. 283, 3529–3536 (2008).

    Article  CAS  Google Scholar 

  18. Showell, C., Binder, O. & Conlon, F.L. T-box genes in early embryogenesis. Dev. Dyn. 229, 201–218 (2004).

    Article  CAS  Google Scholar 

  19. Moulton, J.D. & Yan, Y.L. Using Morpholinos to control gene expression. Curr. Protoc. Mol. Biol. 83, 26.8.1–26.8.29 (2008).

    Google Scholar 

  20. Gajewski, M. et al. Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish. Development 130, 4269–4278 (2003).

    Article  CAS  Google Scholar 

  21. Conlon, F.L., Sedgwick, S.G., Weston, K.M. & Smith, J.C. Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development 122, 2427–2435 (1996).

    CAS  PubMed  Google Scholar 

  22. Gansner, J.M. & Gitlin, J.D. Essential role for the alpha 1 chain of type VIII collagen in zebrafish notochord formation. Dev. Dyn. 237, 3715–3726 (2008).

    Article  CAS  Google Scholar 

  23. Stemple, D.L. et al. Mutations affecting development of the notochord in zebrafish. Development 123, 117–128 (1996).

    CAS  PubMed  Google Scholar 

  24. Currie, P.D. & Ingham, P.W. Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature 382, 452–455 (1996).

    Article  CAS  Google Scholar 

  25. Chen, J.K., Taipale, J., Cooper, M.K. & Beachy, P.A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748 (2002).

    Article  CAS  Google Scholar 

  26. Hill, M.M. et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132, 113–124 (2008).

    Article  CAS  Google Scholar 

  27. Nixon, S.J. et al. Caveolin-1 is required for lateral line neuromast and notochord development. J. Cell Sci. 120, 2151–2161 (2007).

    Article  CAS  Google Scholar 

  28. Nixon, S.J. et al. Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning. Hum. Mol. Genet. 14, 1727–1743 (2005).

    Article  CAS  Google Scholar 

  29. Franchi-Gazzola, R. et al. The role of the neutral amino acid transporter SNAT2 in cell volume regulation. Acta Physiol. (Oxf.) 187, 273–283 (2006).

    Article  CAS  Google Scholar 

  30. Glickman, N.S., Kimmel, C.B., Jones, M.A. & Adams, R.J. Shaping the zebrafish notochord. Development 130, 873–887 (2003).

    Article  CAS  Google Scholar 

  31. Draper, B.W., Stock, D.W. & Kimmel, C.B. Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development 130, 4639–4654 (2003).

    Article  CAS  Google Scholar 

  32. Chesley, P. Development of the short-tailed mutant in the house mouse. J. Exp. Zool. 70, 429–459 (1935).

    Article  Google Scholar 

  33. Wilkinson, D.G., Bhatt, S. & Herrmann, B.G. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657–659 (1990).

    Article  CAS  Google Scholar 

  34. Melby, A.E., Kimelman, D. & Kimmel, C.B. Spatial regulation of floating head expression in the developing notochord. Dev. Dyn. 209, 156–165 (1997).

    Article  CAS  Google Scholar 

  35. Brand, M., Granato, M. & Nusslein-Volhard, C. Keeping and raising zebrafish. in Zebrafish: A Practical Approach (eds. Nusslein-Volhard, C. & Dahm, R.) 7–37 (Oxford University Press, 2002).

  36. Bill, B.R., Petzold, A.M., Clark, K.J., Schimmenti, L.A. & Ekker, S.C. A primer for morpholino use in zebrafish. Zebrafish 6, 69–77 (2009).

    Article  CAS  Google Scholar 

  37. Jowett, T. Double in situ hybridization techniques in zebrafish. Methods 23, 345–358 (2001).

    Article  CAS  Google Scholar 

  38. Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Amacher and A. Garnett for helpful discussions, M. Halpern (Carnegie Institution) for providing ntla and flh cDNA, W. Talbot (Stanford University) for pax2a cDNA, J. Mich and X. Ouyang (both from Stanford University) for sharing in situ hybridization probes and C. Crumpton for technical assistance with FACS. This work was supported by funding from the US National Institutes of Health (R01 GM072600, R01 GM087292 and DP1 OD003792) and the March of Dimes Foundation (1-FY-08-433).

Author information

Authors and Affiliations

Authors

Contributions

J.K.C. and I.A.S. conceived the study; J.K.C. directed its execution; I.A.S. and C.L.W.P. designed, conducted and interpreted the experiments; and J.K.C. and I.A.S. wrote the manuscript with contributions from C.L.W.P.

Corresponding author

Correspondence to James K Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 4178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shestopalov, I., Pitt, C. & Chen, J. Spatiotemporal resolution of the Ntla transcriptome in axial mesoderm development. Nat Chem Biol 8, 270–276 (2012). https://doi.org/10.1038/nchembio.772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing