Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A diversity-oriented synthesis approach to macrocycles via oxidative ring expansion

Abstract

Macrocycles are key structural elements in numerous bioactive small molecules and are attractive targets in the diversity-oriented synthesis of natural product–based libraries. However, efficient and systematic access to diverse collections of macrocycles has proven difficult using classical macrocyclization reactions. To address this problem, we have developed a concise, modular approach to the diversity-oriented synthesis of macrolactones and macrolactams involving oxidative cleavage of a bridging double bond in polycyclic enol ethers and enamines. These substrates are assembled in only four or five synthetic steps and undergo ring expansion to afford highly functionalized macrocycles bearing handles for further diversification. In contrast to macrocyclization reactions of corresponding seco acids, the ring expansion reactions are efficient and insensitive to ring size and stereochemistry, overcoming key limitations of conventional approaches to systematic macrocycle synthesis. Cheminformatic analysis indicates that these macrocycles access regions of chemical space that overlap with natural products, distinct from currently targeted synthetic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macrocyclic natural products and overall strategy for the diversity-oriented synthesis of macrolactones and macrolactams.
Figure 2: Modular approach to diverse polycyclic substrates for oxidative ring expansion.
Figure 3: Functionalization of macrocyclic scaffolds.
Figure 4: Cheminformatic analyses of macrocycle library.

Similar content being viewed by others

References

  1. Driggers, E.M., Hale, S.P., Lee, J. & Terrett, N.K. The exploration of macrocycles for drug discovery–An underexploited structural class. Nat. Rev. Drug Discov. 7, 608–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Wessjohann, L.A., Ruijter, E., Garcia-Rivera, D. & Brandt, W. What can a chemist learn from nature's macrocycles?–A brief, conceptual view. Mol. Divers. 9, 171–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Sánchez-Pedregal, V.M. et al. The tubulin-bound conformation of discodermolide derived by NMR studies in solution supports a common pharmacophore model for epothilone and discodermolide. Angew. Chem. Int. Ed. Engl. 45, 7388–7394 (2006).

    Article  PubMed  Google Scholar 

  4. Canales, A. et al. The bound conformation of microtubule-stabilizing agents: NMR insights into the bioactive 3D structure of discodermolide and dictyostatin. Chem. Eur. J. 14, 7557–7569 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Knust, H. & Hoffmann, R.W. Synthesis and conformational analysis of macrocyclic dilactones mimicking the pharmacophore of aplysiatoxin. Helv. Chim. Acta 86, 1871–1893 (2003).

    Article  CAS  Google Scholar 

  6. Khan, A.R. et al. Lowering the entropic barrier for binding conformationally flexible inhibitors to enzymes. Biochemistry 37, 16839–16845 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Benfield, A.P. et al. Ligand preorganization may be accompanied by entropic penalties in protein–ligand interactions. Angew. Chem. Int. Ed. Engl. 45, 6830–6835 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Udugamasooriya, D.G. & Spaller, M.R. Conformational constraint in protein ligand design and the inconsistency of binding entropy. Biopolymers 89, 653–667 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Veber, D.F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Bauer, R.A., Wurst, J.M. & Tan, D.S. Expanding the range of 'druggable' targets with natural product-based libraries: an academic perspective. Curr. Opin. Chem. Biol. 14, 308–314 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan, D.S. Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat. Chem. Biol. 1, 74–84 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Illuminati, G. & Mandolini, L. Ring closure reactions of bifunctional chain molecules. Acc. Chem. Res. 14, 95–102 (1981).

    Article  CAS  Google Scholar 

  13. Woodward, R.B. et al. Asymmetric total synthesis of erythromycin. 2. Synthesis of an erythronolide A lactone system. J. Am. Chem. Soc. 103, 3213–3215 (1981).

    Article  CAS  Google Scholar 

  14. Blankenstein, J. & Zhu, J. Conformation-directed macrocyclization reactions. European J. Org. Chem. 1949–1964 (2005).

  15. Gradillas, A. & Perez-Castells, J. Macrocyclization by ring-closing metathesis in the total synthesis of natural products: reaction conditions and limitations. Angew. Chem. Int. Ed. Engl. 45, 6086–6101 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Su, Q., Beeler, A.B., Lobkovsky, E., Porco, J.A. & Panek, J.S. Stereochemical diversity through cyclodimerization: synthesis of polyketide-like macrodiolides. Org. Lett. 5, 2149–2152 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Beeler, A.B. et al. Synthesis of a library of complex macrodiolides employing cyclodimerization of hydroxy esters. J. Comb. Chem. 7, 673–681 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt, D.R., Kwon, O. & Schreiber, S.L. Macrolactones in diversity-oriented synthesis: preparation of a pilot library and exploration of factors controlling macrocyclization. J. Comb. Chem. 6, 286–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Marcaurelle, L.A. et al. An aldol-based build/couple/pair strategy for the synthesis of medium- and large-sized rings: discovery of macrocyclic histone deacetylase inhibitors. J. Am. Chem. Soc. 132, 16962–16976 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stach, H. & Hesse, M. Synthesis of macrocyclic compounds by ring enlargement. Tetrahedron 44, 1573–1590 (1988).

    Article  CAS  Google Scholar 

  21. Roxburgh, C.J. The syntheses of large-ring compounds. Tetrahedron 51, 9767–9822 (1995).

    Article  CAS  Google Scholar 

  22. Roxburgh, C.J. Syntheses of medium sized rings by ring expansion reactions. Tetrahedron 49, 10749–10784 (1993).

    Article  CAS  Google Scholar 

  23. Bäurle, S. et al. From rigidity to conformational flexibility: macrocyclic templates derived from ansa-steroids. Angew. Chem. Int. Ed. Engl. 42, 3961–3964 (2003).

    Article  PubMed  Google Scholar 

  24. Bäurle, S. et al. Novel macrocyclic templates by ring enlargement of ansa-steroids. Tetrahedr. Lett. 45, 9569–9571 (2004).

    Article  Google Scholar 

  25. Kumar, N., Kiuchi, M., Tallarico, J.A. & Schreiber, S.L. Small-molecule diversity using a skeletal transformation strategy. Org. Lett. 7, 2535–2538 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Borowitz, I.J. & Gonis, G. The synthesis and oxidation of tetrahydrochroman. A new lactone synthesis. Tetrahedr. Lett. 5, 1151–1155 (1964).

    Article  Google Scholar 

  27. Borowitz, I.J. & Williams, G.J. Medium ring compounds part II. The synthesis of 6-oxodecanolide. Tetrahedr. Lett. 6, 3813–3817 (1965).

    Article  Google Scholar 

  28. Borowitz, I.J. & Rapp, R.D. Ozonolysis of tetrahydrochromans. Formation of glycols and normal ozonolysis products. J. Org. Chem. 34, 1370–1373 (1969).

    Article  CAS  Google Scholar 

  29. Hückel, W., Danneel, R., Schwartz, A. & Gercke, A. Stereochemistry of bicyclic ring systems. V. Δ9,10-Octalin. Justus Liebigs Ann. Chem. 474, 121–144 (1929).

    Article  Google Scholar 

  30. Seebach, D., Weller, T., Protschuk, G., Beck, A.K. & Hoekstra, M.S. Preparation of 1,3-diketones and of nitrodiketones by (1:1)-acylation of lithium enolates with acyl chlorides. Helv. Chim. Acta 64, 716–735 (1981).

    Article  CAS  Google Scholar 

  31. Patil, M.L., Borate, H.B., Ponde, D.E. & Deshpande, V.H. Total synthesis of (±)-brasiliquinone B. Tetrahedron 58, 6615–6620 (2002).

    Article  CAS  Google Scholar 

  32. Pérez Sestelo, J., Real, M.M. & Sarandeses, L.A. Synthesis of polycyclic structures by the Diels-Alder reaction of inner-outer-ring 1,3-bis(trimethylsilyloxy)dienes. J. Org. Chem. 66, 1395–1402 (2001).

    Article  PubMed  Google Scholar 

  33. Pérez Sestelo, J., Real, M.M., Mourino, A. & Sarandeses, L.A. Synthesis of polycyclic structures by Diels–Alder reaction of inner-outer-ring 1,3-bis[(trimethylsilyl)oxy]dienes. Tetrahedr. Lett. 40, 985–988 (1999).

    Article  Google Scholar 

  34. Danishefsky, S., Kerwin, J.F. Jr. & Kobayashi, S. Lewis acid catalyzed cyclocondensations of functionalized dienes with aldehydes. J. Am. Chem. Soc. 104, 358–360 (1982).

    Article  CAS  Google Scholar 

  35. Inokuchi, T., Okano, M. & Miyamoto, T. Catalyzed Diels-Alder reaction of alkylidene- or arylideneacetoacetates and Danishefsky's dienes with lanthanide salts aimed at selective synthesis of cis-4,5-dimethyl-2-cyclohexenone derivatives. J. Org. Chem. 66, 8059–8063 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Dossetter, A.G., Jamison, T.F. & Jacobsen, E.N. Highly enantio- and diastereoselective hetero-Diels–Alder reactions catalyzed by new chiral tridentate chromium (III) catalysts. Angew. Chem. Int. Ed. Engl. 38, 2398–2400 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Gemal, A.L. & Luche, J.L. Lanthanoids in organic synthesis. 6. Reduction of α-enones by sodium borohydride in the presence of lanthanoid chlorides: synthetic and mechanistic aspects. J. Am. Chem. Soc. 103, 5454–5459 (1981).

    Article  CAS  Google Scholar 

  38. Yang, D. & Zhang, C. Ruthenium-catalyzed oxidative cleavage of olefins to aldehydes. J. Org. Chem. 66, 4814–4818 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Carlsen, P.H.J., Katsuki, T., Martin, V.S. & Sharpless, K.B. A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds. J. Org. Chem. 46, 3936–3938 (1981).

    Article  CAS  Google Scholar 

  40. Brown, D.S., Elliott Mark, C., Moody, C.J. & Mowlem, T.J. Preparation of oxonanes and azonanes by oxidative ring expansion: synthesis of obtusan. J. Chem. Soc. Perkin Trans. I 1137–1144 (1995).

  41. Torii, S., Inokuchi, T. & Kondo, K. A facile procedure for oxidative cleavage of enolic olefins to the carbonyl compounds with ruthenium tetroxide (RuO4). J. Org. Chem. 50, 4980–4982 (1985).

    Article  CAS  Google Scholar 

  42. Rincón, S. et al. A new route for the preparation of the 22,23-dioxocholestane side chain from diosgenin and its application to the stereocontrolled construction of the 22R,23S-diol function. Tetrahedron 62, 2594–2602 (2006).

    Article  Google Scholar 

  43. Shiina, I., Kubota, M. & Ibuka, R. A novel and efficient macrolactonization of ω-hydroxycarboxylic acids using 2-methyl-6-nitrobenzoic anhydride (MNBA). Tetrahedr. Lett. 43, 7535–7539 (2002).

    Article  CAS  Google Scholar 

  44. Shiina, I., Kubota, M., Oshiumi, H. & Hashizume, M. An effective use of benzoic anhydride and its derivatives for the synthesis of carboxylic esters and lactones: a powerful and convenient mixed anhydride method promoted by basic catalysts. J. Org. Chem. 69, 1822–1830 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Tanner, D. & Somfai, P. A mild and efficient method for the preparation of N-tosyl amides and lactams. Tetrahedron 44, 613–618 (1988).

    Article  CAS  Google Scholar 

  46. Dumez, E. et al. Synthesis of macrocyclic, potential protease inhibitors using a generic scaffold. J. Org. Chem. 67, 4882–4892 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Ganesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 12, 306–317 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Sauer, W.H.B. & Schwarz, M.K. Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J. Chem. Inf. Comput. Sci. 43, 987–1003 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Boström, J., Norrby, P.-O. & Liljefors, T. Conformational energy penalties of protein-bound ligands. J. Comput. Aided Mol. Des. 12, 383–396 (1998).

    Article  PubMed  Google Scholar 

  50. Akritopoulou-Zanze, I., Metz, J.T. & Djuric, S.W. Topography-biased compound library design: the shape of things to come? Drug Discov. Today 12, 948–952 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dedicated to the memory of our colleague and mentor, David Y. Gin (1967–2011). We thank I. Shiina (Tokyo University of Science) for the generous gift of MNBA; G. Sukenick, H. Liu, H. Fang and S. Rusli (Memorial Sloan-Kettering Cancer Center Analytical Core Facility) for expert mass spectral analyses; and K. Kirschbaum (University of Toledo) for X-ray crystallographic analysis. Financial support from the NIH (P41 GM076267), Starr Foundation, Alfred P. Sloan Foundation (Research Fellowship to D.S.T.) and Deutscher Akademischer Austauschdienst (DAAD, postdoctoral fellowship to F.K.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

F.K., C.F.S. and D.S.T. designed the experiments. F.K. and C.F.S. carried out the synthetic experiments. C.F.S. carried out the PCA analysis. L.B.A. carried out the PMI analysis. F.K., C.F.S. and D.S.T. analyzed the data. F.K., C.F.S. and D.S.T. wrote the manuscript.

Corresponding author

Correspondence to Derek S Tan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 66330 kb)

Supplementary Data Set 1

PCA Data for Figure 4a–c and Supplementary Figure 5 (XLS 961 kb)

Supplementary Data Set 2

PMI Data for Figure 4d, Supplementary Figure 6 and Supplementary Figure 7 (XLS 1406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopp, F., Stratton, C., Akella, L. et al. A diversity-oriented synthesis approach to macrocycles via oxidative ring expansion. Nat Chem Biol 8, 358–365 (2012). https://doi.org/10.1038/nchembio.911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing