Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

General acid catalysis by the hepatitis delta virus ribozyme

Abstract

Recent crystallographic and functional analyses of RNA enzymes have raised the possibility that the purine and pyrimidine nucleobases may function as general acid-base catalysts. However, this mode of nucleobase-mediated catalysis has been difficult to establish unambiguously. Here, we used a hyperactivated RNA substrate bearing a 5′-phosphorothiolate to investigate the role of a critical cytosine residue in the hepatitis delta virus ribozyme. The hyperactivated substrate specifically suppressed the deleterious effects of cytosine mutations and pH changes, thereby linking the protonation of the nucleobase to leaving-group stabilization. We conclude that the active-site cytosine provides general acid catalysis, mediating proton transfer to the leaving group through a protonated N3-imino nitrogen. These results establish a specific role for a nucleobase in a ribozyme reaction and support the proposal that RNA nucleobases may function in a manner analogous to that of catalytic histidine residues in protein enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinetically equivalent roles proposed for the active-site cytosine in the HDV ribozyme reaction.
Figure 2: The wild-type HDV ribozyme catalyzes cleavage of the hyperactivated substrate S5′-S.
Figure 3: S5′-S suppresses the C76U mutant defect.
Figure 4: The single-atom-mutant ribozyme C76c3C shows nearly wild-type activity against S5′-S.
Figure 5: Kinetically equivalent models from two independent, offsetting titrations simulate the pH dependence of the HDV ribozyme.
Figure 6: The pH dependence of the C76z6C mutant ribozyme implicates C76 in general acid catalysis.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Ferre-D'Amare, A.R., Zhou, K. & Doudna, J.A. Crystal structure of a hepatitis delta virus ribozyme. Nature 395, 567–574 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Murray, J.B., Seyhan, A.A., Walter, N.G., Burke, J.M. & Scott, W.G. The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem. Biol. 5, 587–595 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Perrotta, A.T., Shih, I. & Been, M.D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 286, 123–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Shih, I.H. & Been, M.D. Involvement of a cytosine side chain in proton transfer in the rate-determining step of ribozyme self-cleavage. Proc. Natl. Acad. Sci. USA 98, 1489–1494 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakano, S., Chadalavada, D.M. & Bevilacqua, P.C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science 287, 1493–1497 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Pinard, R. et al. Functional involvement of G8 in the hairpin ribozyme cleavage mechanism. EMBO J. 20, 6434–6442 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lebruska, L.L., Kuzmine, I.I. & Fedor, M.J. Rescue of an abasic hairpin ribozyme by cationic nucleobases: evidence for a novel mechanism of RNA catalysis. Chem. Biol. 9, 465–473 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Rupert, P.B., Massey, A.P., Sigurdsson, S.T. & Ferre-D'Amare, A.R. Transition state stabilization by a catalytic RNA. Science 298, 1421–1424 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Youngman, E.M., Brunelle, J.L., Kochaniak, A.B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Shih, I.H. & Been, M.D. Catalytic strategies of the hepatitis delta virus ribozymes. Annu. Rev. Biochem. 71, 887–917 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Nakano, S. & Bevilacqua, P.C. Proton inventory of the genomic HDV ribozyme in Mg2+-containing solutions. J. Am. Chem. Soc. 123, 11333–11334 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Oyelere, A.K., Kardon, J.R. & Strobel, S.A. pK a perturbation in genomic hepatitis delta virus ribozyme catalysis evidenced by nucleotide analogue interference mapping. Biochemistry 41, 3667–3675 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Ke, A., Zhou, K., Ding, F., Cate, J.H. & Doudna, J.A. A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature 429, 201–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Pereira, M.J., Harris, D.A., Rueda, D. & Walter, N.G. Reaction pathway of the trans-acting hepatitis delta virus ribozyme: a conformational change accompanies catalysis. Biochemistry 41, 730–740 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Harris, D.A., Rueda, D. & Walter, N.G. Local conformational changes in the catalytic core of the trans-acting hepatitis delta virus ribozyme accompany catalysis. Biochemistry 41, 12051–12061 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Ouellet, J. & Perreault, J.P. Cross-linking experiments reveal the presence of novel structural features between a hepatitis delta virus ribozyme and its substrate. RNA 10, 1059–1072 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bevilacqua, P.C. Mechanistic considerations for general acid-base catalysis by RNA: Revisiting the mechanism of the hairpin ribozyme. Biochemistry 42, 2259–2265 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Thompson, J.E. & Raines, R.T. Value of general acid-base catalysis to ribonuclease-A. J. Am. Chem. Soc. 116, 5467–5468 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. MacLeod, A.M., Tull, D., Rupitz, K., Warren, R.A. & Withers, S.G. Mechanistic consequences of mutation of active site carboxylates in a retaining β-1,4-glycanase from Cellulomonas fimi . Biochemistry 35, 13165–13172 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Hoff, R.H., Hengge, A.C., Wu, L., Keng, Y.F. & Zhang, Z.Y. Effects on general acid catalysis from mutations of the invariant tryptophan and arginine residues in the protein tyrosine phosphatase from Yersinia . Biochemistry 39, 46–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Yoshida, A., Shan, S., Herschlag, D. & Piccirilli, J.A. The role of the cleavage site 2′-hydroxyl in the Tetrahymena group I ribozyme reaction. Chem. Biol. 7, 85–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, L., Liu, Y., Bruzik, K.S. & Tsai, M.D. A novel calcium-dependent bacterial phosphatidylinositol-specific phospholipase C displaying unprecedented magnitudes of thio effect, inverse thio effect, and stereoselectivity. J. Am. Chem. Soc. 125, 22–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Krogh, B.O. & Shuman, S. Catalytic mechanism of DNA topoisomerase IB. Mol. Cell 5, 1035–1041 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Kuimelis, R.G. & McLaughlin, L.W. Application of a 5′-bridging phosphorothioate to probe divalent metal and hammerhead ribozyme mediated RNA cleavage. Bioorg. Med. Chem. 5, 1051–1061 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, D.M., Zhang, L.H. & Taira, K. Explanation by the double-metal-ion mechanism of catalysis for the differential metal ion effects on the cleavage rates of 5′-oxy and 5′-thio substrates by a hammerhead ribozyme. Proc. Natl. Acad. Sci. USA 94, 14343–14348 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fife, T.H. & Milstien, S. Carboxyl-group participation in phosphorothioate hydrolysis: hydrolysis of s-(2-carboxyphenyl) phosphorothioate. J. Org. Chem. 34, 4007–4012 (1969).

    Article  CAS  Google Scholar 

  28. Chaulk, S.G. & MacMillan, A.M. Caged RNA: photo-control of a ribozyme reaction. Nucleic Acids Res. 26, 3173–3178 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shih, I. & Been, M.D. Kinetic scheme for intermolecular RNA cleavage by a ribozyme derived from hepatitis delta virus RNA. Biochemistry 39, 9055–9066 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Bevilacqua, P.C., Brown, T.S., Nakano, S. & Yajima, R. Catalytic roles for proton transfer and protonation in ribozymes. Biopolymers 73, 90–109 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Juneau, K., Podell, E., Harrington, D.J. & Cech, T.R. Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA-solvent interactions. Structure 9, 221–231 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Searls, T. & McLaughlin, L.W. Synthesis of the analogue nucleoside 3-deaza-2′-deoxycytidine and its template activity with DNA polymerase. Tetrahedron 55, 11985–11996 (1999).

    Article  CAS  Google Scholar 

  33. Cook, P.D., Day, R.T. & Robins, R.K. Improved synthesis of 3-deazacytosine, 3-deazauracil, 3-deazacytidine, and 3-deazauridine. J. Heterocyclic Chem. 14, 1295–1298 (1977).

    Article  CAS  Google Scholar 

  34. Bevers, S. & Mclaughlin, L.W. Use of analogue nucleosides to probe function in the hammerhead ribozyme. in Ribozyme: Biochemistry and Biotechnology (eds. Krupp, G. & Gaur, R.K.) 171–190 (Eaton Publishing, Natick, Massachusetts, 2000).

    Google Scholar 

  35. Moore, M.J. & Sharp, P.A. Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. Science 256, 992–997 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Moore, M.J. & Query, C.C. Joining of RNAs by splinted ligation. Methods Enzymol. 317, 109–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Nakano, S., Proctor, D.J. & Bevilacqua, P.C. Mechanistic characterization of the HDV genomic ribozyme: assessing the catalytic and structural contributions of divalent metal ions within a multichannel reaction mechanism. Biochemistry 40, 12022–12038 (2001).

    CAS  PubMed  Google Scholar 

  38. Romanova, D. & Novotny, L. Chromatographic properties of cytosine, cytidine and their synthetic analogues. J. Chromatog. B. 675, 9–15 (1996).

    Article  CAS  Google Scholar 

  39. Beigelman, L., Karpeisky, A. & Usman, N. Synthesis of 6-aza-pyrimidine and 6-methyl-pyrimidine ribonucleoside phosphoramidites and their incorporation in hammerhead ribozymes. Nucleosides Nucleotides 14, 895–899 (1995).

    Article  CAS  Google Scholar 

  40. Hiley, S.L., Sood, V.D., Fan, J. & Collins, R.A. 4-thio-U cross-linking identifies the active site of the VS ribozyme. EMBO J. 21, 4691–4698 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lilley, D.M.J. The Varkud satellite ribozyme. RNA 10, 151–158 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Winkler, W.C., Nahvi, A., Roth, A., Collins, J.A. & Breaker, R.R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Milligan, J.F. & Uhlenbeck, O.C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Kao, C., Zheng, M. & Rudisser, S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3′ terminus of RNAs transcribed by T7 RNA polymerase. RNA 5, 1268–1272 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Ke and J.A. Doudna for helpful discussions and J. Staley, M.D. Been, P.C. Bevilacqua, D. Herschlag and members of the Piccirilli laboratory for critical comments and suggestions on the manuscript. We also thank J. Olvera for T4 DNA ligase and E. Duguid for assistance with MALDI mass spectroscopy. This work was supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A Piccirilli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

1H-NMR spectrum of 2′-O-TBDMS-5′-O-DMTr-N4-phenoxyacetyl-3-deazacytidine which was phosphitylated to obtain the phosphoramidite analogue (31P-NMR peaks at δ 150.4 ppm and 149.8 ppm; H3PO4 external standard) for solid phase synthesis. (PDF 5340 kb)

Supplementary Fig. 2

1H-NMR spectrum of 2′-OTBDMS-5′-O-DMTr-N4-acetyl-6-azacytidine which was phosphitylated to obtain the phosphoramidite analogue (31P-NMR peaks at δ 150.6 ppm and 149.6 ppm; H3PO4 external standard) for solid phase synthesis. (PDF 5527 kb)

Supplementary Note (PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Piccirilli, J. General acid catalysis by the hepatitis delta virus ribozyme. Nat Chem Biol 1, 45–52 (2005). https://doi.org/10.1038/nchembio703

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio703

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing