Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamic imaging of protease activity with fluorescently quenched activity-based probes

Abstract

Protease activity is tightly regulated in both normal and disease conditions. However, it is often difficult to monitor the dynamic nature of this regulation in the context of a live cell or whole organism. To address this limitation, we developed a series of quenched activity-based probes (qABPs) that become fluorescent upon activity-dependent covalent modification of a protease target. These reagents freely penetrate cells and allow direct imaging of protease activity in living cells. Targeted proteases are directly identified and monitored biochemically by virtue of the resulting covalent tag, thereby allowing unambiguous assignment of protease activities observed in imaging studies. We report here the design and synthesis of a selective, cell-permeable qABP for the study of papain-family cysteine proteases. This probe is used to monitor real-time protease activity in live human cells with fluorescence microscopy techniques as well as standard biochemical methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of a qABP.
Figure 2: Labeling of recombinant cathepsins and intact cells with the control ABP and qABP.
Figure 3: Imaging protease activity in live cells.
Figure 4: Imaging protease activity in three-dimensional cultured cells.

Similar content being viewed by others

References

  1. Puente, X.S., Sánchez, L.M., Overall, C.M. & López-Otín, C. Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544–558 (2003).

    Article  CAS  Google Scholar 

  2. Baruch, A., Jeffery, D.A. & Bogyo, M. Enzyme activity–it's all about image. Trends Cell Biol. 14, 29–35 (2004).

    Article  CAS  Google Scholar 

  3. Berger, A.B., Vitorino, P.M. & Bogyo, M. Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery. Am. J. Pharmacogenomics 4, 371–381 (2004).

    Article  CAS  Google Scholar 

  4. Speers, A.E. & Cravatt, B.F. Chemical strategies for activity-based proteomics. ChemBioChem 5, 41–47 (2004).

    Article  CAS  Google Scholar 

  5. Jeffery, D.A. & Bogyo, M. Chemical proteomics and its application to drug discovery. Curr. Opin. Biotechnol. 14, 87–95 (2003).

    Article  CAS  Google Scholar 

  6. Adam, G.C., Sorensen, E.J. & Cravatt, B.F. Chemical strategies for functional proteomics. Mol. Cell. Proteomics 1, 781–790 (2002).

    Article  CAS  Google Scholar 

  7. Jessani, N. & Cravatt, B.F. The development and application of methods for activity-based protein profiling. Curr. Opin. Chem. Biol. 8, 54–59 (2004).

    Article  CAS  Google Scholar 

  8. Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  Google Scholar 

  9. Kato, D. et al. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol. 1, 33–38 (2005).

    Article  CAS  Google Scholar 

  10. Bogyo, M., Shin, S., McMaster, J.S. & Ploegh, H.L. Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem. Biol. 5, 307–320 (1998).

    Article  CAS  Google Scholar 

  11. Bogyo, M., Verhelst, S., Bellingard-Dubouchaud, V., Toba, S. & Greenbaum, D. Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chem. Biol. 7, 27–38 (2000).

    Article  CAS  Google Scholar 

  12. Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M. & Cravatt, B.F. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl. Acad. Sci. USA 101, 10000–10005 (2004).

    Article  CAS  Google Scholar 

  13. Chan, E.W., Chattopadhaya, S., Panicker, R.C., Huang, X. & Yao, S.Q. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. J. Am. Chem. Soc. 126, 14435–14446 (2004).

    Article  CAS  Google Scholar 

  14. Greenbaum, D., Medzihradszky, K.F., Burlingame, A. & Bogyo, M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol. 7, 569–581 (2000).

    Article  CAS  Google Scholar 

  15. Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).

    Article  CAS  Google Scholar 

  16. Falgueyret, J.P. et al. An activity-based probe for the determination of cysteine cathepsin protease activities in whole cells. Anal. Biochem. 335, 218–227 (2004).

    Article  CAS  Google Scholar 

  17. Hemelaar, J. et al. Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Mol. Cell. Biol. 24, 84–95 (2004).

    Article  CAS  Google Scholar 

  18. Borodovsky, A. et al. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 20, 5187–5196 (2001).

    Article  CAS  Google Scholar 

  19. Borodovsky, A. et al. Small-molecule inhibitors and probes for ubiquitin- and ubiquitin-like-specific proteases. ChemBioChem 6, 287–291 (2005).

    Article  CAS  Google Scholar 

  20. Greenbaum, D.C. et al. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science 298, 2002–2006 (2002).

    Article  CAS  Google Scholar 

  21. Yasothornsrikul, S. et al. Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter. Proc. Natl. Acad. Sci. USA 100, 9590–9595 (2003).

    Article  CAS  Google Scholar 

  22. Goulet, B. et al. A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol. Cell 14, 207–219 (2004).

    Article  CAS  Google Scholar 

  23. Baruch, A. et al. Defining a link between gap junction communication, proteolysis, and cataract formation. J. Biol. Chem. 276, 28999–29006 (2001).

    Article  CAS  Google Scholar 

  24. Mahrus, S. & Craik, C.S. Selective chemical functional probes of granzymes A and B reveal granzyme B is a major effector of natural killer cell-mediated lysis of target cells. Chem. Biol. 12, 567–577 (2005).

    Article  CAS  Google Scholar 

  25. Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B.F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl. Acad. Sci. USA 99, 10335–10340 (2002).

    Article  CAS  Google Scholar 

  26. Jessani, N. et al. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc. Natl. Acad. Sci. USA 101, 13756–13761 (2004).

    Article  CAS  Google Scholar 

  27. Joyce, J.A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004).

    Article  CAS  Google Scholar 

  28. Okerberg, E.S. et al. High-resolution functional proteomics by active-site peptide profiling. Proc. Natl. Acad. Sci. USA 102, 4996–5001 (2005).

    Article  CAS  Google Scholar 

  29. Powers, J.C., Asgian, J.L., Ekici, O.D. & James, K.E. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102, 4639–4750 (2002).

    Article  CAS  Google Scholar 

  30. Sando, S. & Kool, E.T. Quencher as leaving group: efficient detection of DNA-joining reactions. J. Am. Chem. Soc. 124, 2096–2097 (2002).

    Article  CAS  Google Scholar 

  31. Sando, S. & Kool, E.T. Imaging of RNA in bacteria with self-ligating quenched probes. J. Am. Chem. Soc. 124, 9686–9687 (2002).

    Article  CAS  Google Scholar 

  32. Turk, D., Guncar, G., Podobnik, M. & Turk, B. Revised definition of substrate binding sites of papain-like cysteine proteases. Biol. Chem. 379, 137–147 (1998).

    Article  CAS  Google Scholar 

  33. Musil, D. et al. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 10, 2321–2330 (1991).

    Article  CAS  Google Scholar 

  34. O'Brien, L.E., Zegers, M.M. & Mostov, K.E. Opinion: Building epithelial architecture: insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3, 531–537 (2002).

    Article  CAS  Google Scholar 

  35. Debnath, J., Muthuswamy, S.K. & Brugge, J.S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    Article  CAS  Google Scholar 

  36. Bieth, J.G. Theoretical and practical aspects of proteinase inhibition kinetics. Methods Enzymol. 248, 59–84 (1995).

    Article  CAS  Google Scholar 

  37. Barlic-Maganja, D., Dolinar, M. & Turk, V. The influence of Ala205 on the specificity of cathepsin L produced by dextran sulfate assisted activation of the recombinant proenzyme. Biol. Chem. 379, 1449–1452 (1998).

    CAS  PubMed  Google Scholar 

  38. Deval, C., Bechet, D., Obled, A. & Ferrara, M. Purification and properties of different isoforms of bovine cathepsin B. Biochem. Cell Biol. 68, 822–826 (1990).

    Article  CAS  Google Scholar 

  39. Moin, K. et al. Human tumour cathepsin B. Comparison with normal liver cathepsin B. Biochem. J. 285, 427–434 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Goulet and A. Nepveu (McGill University) for cathepsin L–deficient MEF cells and V. Turk and B. Turk (J. Stefan Institute) for recombinant human cathepsin L. The authors thank C. Gilon for helpful advice on peptide synthesis, G. von Degenfeld for technical assistance throughout the project, K. Boatright and S. Verhelst for helpful discussion of the manuscript. This work was supported by a Turman Fellowship at Stanford University (to M.B.), a US National Institutes of Health National Technology Center for Networks and Pathways grant U54 RR020843 (to M.B.), and a Department of Defense Breast Cancer Center of Excellence grant DAMD-17-02-0693 (to B.F.S.; M.B. subcontract).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Bogyo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Departments of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Dr., Stanford, 94305, California, USA

Supplementary information

Supplementary Fig. 1

Determination of quenching efficiency of the qABP GB117 relative to the unquenched control ABP GB111. (PDF 530 kb)

Supplementary Fig. 2

GB111 and GB117 where docked into cathepsin B (1SP4) and cathepsin L (1MHW) using the MMF94 force field using MOE (Chemical Computing Group). (PDF 3430 kb)

Supplementary Table 1

Inhibition rate constants of various probes for human cathepsin L and bovine cathepsin B. (PDF 35 kb)

Supplementary Methods (PDF 1983 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, G., Mullins, S., Keren, K. et al. Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol 1, 203–209 (2005). https://doi.org/10.1038/nchembio728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing