Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Trafficking in persulfides: delivering sulfur in biosynthetic pathways

Abstract

The presence of sulfur in cofactors has been appreciated for over a century, but the trafficking and delivery of sulfur to cofactors and nucleosides is still not fully understood. In the last decade, great strides have been made toward understanding those processes and the enzymes that conduct them, including cysteine desulfurases and rhodanese homology domain proteins. The persulfide group (R–S–SH) predominantly serves as the sulfur donor, and sulfur incorporation pathways share enzymes to a remarkable degree. Mechanisms for the use of persulfide groups are illustrated with the relatively simple case of 4-thiourdine generation, and further possibilities are illuminated by the 2-thiouridine and cofactor biosynthetic systems. The rationale and ramifications of sharing enzymes between sulfur incorporation pathways are discussed, including implications for interpreting genetic or genomic data that indicate a role for a sulfur transfer protein in a particular biological process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cofactors and RNA nucleosides that contain sulfur.
Figure 2: Sulfur transfer mediated by the Tus proteins.

Similar content being viewed by others

References

  1. Fontecave, M., Atta, M. & Mulliez, E. S-Adenosylmethionine: nothing goes to waste. Trends Biochem. Sci. 29, 243–249 (2004).

    CAS  PubMed  Google Scholar 

  2. Kluger, R. Thiamin diphosphate: a mechanistic update on enzymatic and nonenzymic catalysis of decarboxylation. Chem. Rev. 87, 863–876 (1987).

    CAS  Google Scholar 

  3. Hille, R., Retey, J., Bartlewski-Hof, U., Reichenbecher, W. & Schink, B. Mechanistic aspects of molybdenum-containing enzymes. FEMS Microbiol. Rev. 22, 489–501 (1998).

    CAS  PubMed  Google Scholar 

  4. Knowles, J.R. The mechanism of biotin-dependent enzymes. Annu. Rev. Biochem. 58, 195–221 (1989).

    CAS  PubMed  Google Scholar 

  5. Grant, A.S. Computational evidence for sulfur participation in the first half-reaction of biotin-catalyzed carboxylations. J. Mol. Struct. Theochem. 422, 79–87 (1998).

    CAS  Google Scholar 

  6. Attwood, P.V. & Wallace, J.C. Chemical and catalytic mechanisms of carboxyl transfer reactions in biotin-dependent enzymes. Acc. Chem. Res. 35, 113–120 (2002).

    CAS  PubMed  Google Scholar 

  7. Grosjean, H. & Benne, R. Modification and Editing of RNA (American Society for Microbiology, Washington, D.C., 1998).

    Google Scholar 

  8. Sekowska, A., Kung, H.F. & Danchin, A. Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J. Mol. Microbiol. Biotechnol. 2, 145–177 (2000).

    CAS  PubMed  Google Scholar 

  9. Hwang, C.C., Woehl, E.U., Minter, D.E., Dunn, M.F. & Cook, P.F. Kinetic isotope effects as a probe of the β-elimination reaction catalyzed by O-acetylserine sulfhydrylase. Biochemistry 35, 6358–6365 (1996).

    CAS  PubMed  Google Scholar 

  10. Tai, C.H., Nalabolu, S.R., Jacobson, T.M., Minter, D.E. & Cook, P.F. Kinetic mechanisms of the A and B isozymes of O-acetylserine sulfhydrylase from Salmonella typhimurium LT-2 using the natural and alternative reactants. Biochemistry 32, 6433–6442 (1993).

    CAS  PubMed  Google Scholar 

  11. Toohey, J.I. Sulfane sulfur in biological systems: a possible regulatory role. Biochem. J. 264, 625–632 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mihara, H. & Esaki, N. Bacterial cysteine desulfurases: their function and mechanisms. Appl. Microbiol. Biotechnol. 60, 12–23 (2002).

    CAS  PubMed  Google Scholar 

  13. Zheng, L., White, R.H., Cash, V.L. & Dean, D.R. Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product. Biochemistry 33, 4714–4720 (1994).

    CAS  PubMed  Google Scholar 

  14. Flint, D.H. Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase. J. Biol. Chem. 271, 16068–16074 (1996).

    CAS  PubMed  Google Scholar 

  15. Mihara, H., Kurihara, T., Yoshimura, T., Soda, K. & Esaki, N. Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities: gene cloning, purification, and characterization of a novel pyridoxal enzyme. J. Biol. Chem. 272, 22417–22424 (1997).

    CAS  PubMed  Google Scholar 

  16. Mihara, H. et al. A nifS-like gene, csdB, encodes an Escherichia coli counterpart of mammalian selenocysteine lyase: gene cloning, purification, characterization and preliminary X-ray crystallographic studies. J. Biol. Chem. 274, 14768–14772 (1999).

    CAS  PubMed  Google Scholar 

  17. Patzer, S.I. & Hantke, K. SufS is a NifS-like protein, and SufD is necessary for stability of the [2Fe-2S] FhuF protein in Escherichia coli. J. Bacteriol. 181, 3307–3309 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lauhon, C.T. & Kambampati, R. The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD+. J. Biol. Chem. 275, 20096–20103 (2000).

    CAS  PubMed  Google Scholar 

  19. Mihara, H. et al. The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and the selenocysteine-containing formate dehydrogenase H. Proc. Natl. Acad. Sci. USA 99, 6679–6683 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Loiseau, L. et al. Analysis of the heteromeric CsdA-CsdE cysteine desulfurase, assisting Fe-S cluster biogenesis in Escherichia coli. J. Biol. Chem. 280, 26760–26769 (2005).

    CAS  PubMed  Google Scholar 

  21. Leimkuhler, S. & Rajagopalan, K.V. A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli. J. Biol. Chem. 276, 22024–22031 (2001).

    CAS  PubMed  Google Scholar 

  22. Outten, F.W., Wood, M.J., Munoz, F.M. & Storz, G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J. Biol. Chem. 278, 45713–45719 (2003).

    CAS  PubMed  Google Scholar 

  23. Mihara, H., Kurihara, T., Yoshimura, T. & Esaki, N. Kinetic and mutational studies of three NifS homologs from Escherichia coli: mechanistic difference between L-cysteine desulfurase and L-selenocysteine lyase reaction. J. Biochem. 127, 559–567 (2000).

    CAS  PubMed  Google Scholar 

  24. Westley, J. Rhodanese. Adv. Enzymol. 39, 327–368 (1973).

    CAS  PubMed  Google Scholar 

  25. Knowles, C.J. Microorganisms and cyanide. Bacteriol. Rev. 40, 652–680 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nandi, D.L., Horowitz, P.M. & Westley, J. Rhodanese as a thioredoxin oxidase. Int. J. Biochem. Cell Biol. 32, 465–473 (2000).

    CAS  PubMed  Google Scholar 

  27. Bordo, D. & Bork, P. The rhodanese/Cdc25 phosphatase superfamily: sequence-structure-function relations. EMBO Rep. 3, 741–746 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Palenchar, P.M., Buck, C.J., Cheng, H., Larson, T.J. & Mueller, E.G. Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. J. Biol. Chem. 275, 8283–8286 (2000).

    CAS  PubMed  Google Scholar 

  29. Matthies, A., Rajagopalan, K.V., Mendel, R.R. & Leimkuhler, S. Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proc. Natl. Acad. Sci. USA 101, 5946–5951 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Matthies, A., Nimtz, M. & Leimkuhler, S. Molybdenum cofactor biosynthesis in humans: identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry. Biochemistry 44, 7912–7920 (2005).

    CAS  PubMed  Google Scholar 

  31. Wolfe, M.D. et al. Functional diversity of the rhodanese homology domain: the Escherichia coli ybbB gene encodes a selenophosphate-dependent tRNA 2-selenouridine synthase. J. Biol. Chem. 279, 1801–1809 (2004).

    CAS  PubMed  Google Scholar 

  32. Favre, A., Yaniv, M. & Michelson, A.M. The photochemistry of 4-thiouridine in Escherichia coli transfer RNAIVal. Bioch. Biophys. Res. Commun. 37, 266–271 (1969).

    CAS  Google Scholar 

  33. Favre, A., Michelson, A.M. & Yaniv, M. Photochemistry of 4-thiouridine in Escherichia coli transfer RNA1Val. J. Mol. Biol. 58, 367–379 (1971).

    CAS  PubMed  Google Scholar 

  34. Carre, D.S., Thomas, G. & Favre, A. Conformation and functioning of transfer RNAs: crosslinked transfer RNAs as substrate for transfer RNA nucleotidyl-transferase and aminoacyl synthetases. Biochimie 56, 1089–1101 (1974).

    CAS  PubMed  Google Scholar 

  35. Ryals, J., Hsu, R.-Y., Lipsett, M.N. & Bremer, H. Isolation of single-site Escherichia coli mutants deficient in thiamine and 4-thiouridine syntheses: identification of a nuvC mutant. J. Bacteriol. 151, 899–904 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Peterkofsky, A. & Lipsett, M.N. The origin of the sulfur in s-RNA. Bioch. Biophys. Res. Commun. 20, 780–786 (1965).

    CAS  Google Scholar 

  37. Lipsett, M.N., Norton, J.S. & Peterkofsky, A. A requirement for β-mercaptopyruvate in the in vitro thiolation of transfer ribonucleic acid. Biochemistry 6, 855–860 (1967).

    CAS  PubMed  Google Scholar 

  38. Lipsett, M.N. & Peterkofsky, A. Enzymatic thiolation of E. coli sRNA. Proc. Natl. Acad. Sci. USA 55, 1169–1174 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lipsett, M.N. Biosynthesis of 4-thiuridylate: participation of a sulfurtransferase containing pyridoxal 5′-phosphate. J. Biol. Chem. 247, 1458–1461 (1972).

    CAS  PubMed  Google Scholar 

  40. Abrell, J.W., Kaufman, D.E. & Lipsett, M.N. The biosynthesis of 4-thiouridylate: separation and purification of two enzymes in the transfer ribonucleic acid-sulfurtransferase system. J. Biol. Chem. 246, 294–301 (1971).

    CAS  PubMed  Google Scholar 

  41. Mueller, E.G., Buck, C.J., Palenchar, P.M., Barnhart, L.E. & Paulson, J.L. Identification of a gene involved in the generation of 4-thiouridine in tRNA. Nucleic Acids Res. 26, 2606–2610 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kambampati, R. & Lauhon, C.T. IscS is a sulfurtransferase for the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. Biochemistry 38, 16561–16568 (1999).

    CAS  PubMed  Google Scholar 

  43. Kambampati, R. & Lauhon, C.T. Evidence for the transfer of sulfane sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. J. Biol. Chem. 275, 10727–10730 (2000).

    CAS  PubMed  Google Scholar 

  44. Mueller, E.G., Palenchar, P.M. & Buck, C.J. The role of the cysteine residues of ThiI in the generation of 4-thiouridine in tRNA. J. Biol. Chem. 276, 33588–33595 (2001).

    CAS  PubMed  Google Scholar 

  45. Wright, C.M., Palenchar, P.M. & Mueller, E.G. A paradigm for biological sulfur transfers via persulfide groups: a persulfide-disulfide-thiol cycle in 4-thiouridine biosynthesis. Chem. Commun. 22, 2708–2709 (2002).

    Google Scholar 

  46. Lauhon, C.T., Erwin, W.M. & Ton, G.N. Substrate specificity for 4-thiouridine modification in Escherichia coli. J. Biol. Chem. 279, 23022–23029 (2004).

    CAS  PubMed  Google Scholar 

  47. Schendel, F.J., Mueller, E., Stubbe, J., Shiau, A. & Smith, J.M. Formylglycinamide ribonucleotide synthetase from Escherichia coli: cloning, sequencing, overproduction, isolation, and characterization. Biochemistry 28, 2459–2471 (1989).

    CAS  PubMed  Google Scholar 

  48. Badet-Denisot, M.A., Rene, L. & Badet, B. Mechanistic investigations on glucosamine-6-phosphate synthase. Bull. Soc. Chim. Fr. 130, 249–255 (1993).

    CAS  Google Scholar 

  49. Igeno, M.I., Caballero, F.J. & Castillo, F. Molecular and kinetic characterization of glutamate synthase from the phototrophic bacterium Rhodobacter capsulatus E1f1. J. Gen. Microbiol. 139, 2921–2929 (1993).

    CAS  Google Scholar 

  50. Thoden, J.B., Holden, H.M., Wesenberg, G., Raushel, F.M. & Rayment, I. Structure of carbamoyl phosphate synthetase: a journey of 96 Å from substrate to product. Biochemistry 36, 6305–6316 (1997).

    CAS  PubMed  Google Scholar 

  51. Raushel, F.M., Thoden, J.B. & Holden, H.M. Enzymes with molecular tunnels. Acc. Chem. Res. 36, 539–548 (2003).

    CAS  PubMed  Google Scholar 

  52. Waterman, D.G., Ortiz-Lombardia, M., Fogg, M.J., Koonin, E.V. & Antson, A.A. Crystal structure of Bacillus anthracis ThiI, a tRNA-modifying enzyme containing the predicted RNA-binding THUMP domain. J. Mol. Biol. 356, 97–110 (2006).

    CAS  PubMed  Google Scholar 

  53. Kambampati, R. & Lauhon, C.T. MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochemistry 42, 1109–1117 (2003).

    CAS  PubMed  Google Scholar 

  54. Ikeuchi, Y., Shigi, N., Kato, J.-i., Nishimura, A. & Suzuki, T. Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol. Cell 21, 97–108 (2006).

    CAS  PubMed  Google Scholar 

  55. Lauhon, C.T., Skovran, E., Urbina, H.D., Downs, D.M. & Vickery, L.E. Substitutions in an active site loop of Escherichia coli IscS result in specific defects in Fe-S cluster and thionucleoside biosynthesis in vivo. J. Biol. Chem. 279, 19551–19558 (2004).

    CAS  PubMed  Google Scholar 

  56. Nilsson, K., Lundgren, H.K., Hagervall, T.G. & Bjork, G.R. The cysteine desulfurase IscS is required for synthesis of all five thiolated nucleosides present in tRNA from Salmonella enterica serovar Typhimurium. J. Bacteriol. 184, 6830–6835 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Leipuviene, R., Qian, Q. & Bjork, G.R. Formation of thiolated nucleosides present in tRNA from Salmonella enterica serovar Typhimurium occurs in two principally distinct pathways. J. Bacteriol. 186, 758–766 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lundgren, H.K. & Bjork, G.R. Structural alterations of the cysteine desulfurase IscS of Salmonella enterica serovar Typhimurium reveals substrate specificity by IscS in tRNA thiolation. J. Bacteriol. (in the press).

  59. Cupp-Vickery, J.R., Urbina, H. & Vickery, L.E. Crystal structure of IscS, a cysteine desulfurase from Escherichia coli. J. Mol. Biol. 330, 1049–1059 (2003).

    CAS  PubMed  Google Scholar 

  60. Leimkuhler, S., Wuebbens, M.M. & Rajagopalan, K.V. Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor. J. Biol. Chem. 276, 34695–34701 (2001).

    CAS  PubMed  Google Scholar 

  61. Lake, M.W., Wuebbens, M.M., Rajagopalan, K.V. & Schindelin, H. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 414, 325–329 (2001).

    CAS  PubMed  Google Scholar 

  62. Taylor, S.V. et al. Thiamin biosynthesis in Escherichia coli: identification of ThiS thiocarboxylate as the immediate sulfur donor in the thiazole formation. J. Biol. Chem. 273, 16555–16560 (1998).

    CAS  PubMed  Google Scholar 

  63. Xi, J., Ge, Y., Kinsland, C., McLafferty, F.W. & Begley, T.P. Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: identification of an acyldisulfide-linked protein–protein conjugate that is functionally analogous to the ubiquitin/E1 complex. Proc. Natl. Acad. Sci. USA 98, 8513–8518 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lehmann, C., Begley, T.P. & Ealick, S.E. Structure of the Escherichia coli ThiS-ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. Biochemistry 45, 11–19 (2006).

    CAS  PubMed  Google Scholar 

  65. Johnson, D.C., Dean, D.R., Smith, A.D. & Johnson, M.K. Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74, 247–281 (2005).

    CAS  PubMed  Google Scholar 

  66. Sofia, H.J., Chen, G., Hetzler, B.G., Reyes-Spindola, J.F. & Miller, N.E. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29, 1097–1106 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheek, J. & Broderick, J.B. Adenosylmethionine-dependent iron-sulfur enzymes: versatile clusters in a radical new role. J. Biol. Inorg. Chem. 6, 209–226 (2001).

    CAS  PubMed  Google Scholar 

  68. Frey, P.A. Radical mechanisms of enzymatic catalysis. Annu. Rev. Biochem. 70, 121–148 (2001).

    CAS  PubMed  Google Scholar 

  69. Bui, B.T.S. et al. Biotin synthase mechanism: on the origin of sulphur. FEBS Lett. 440, 226–230 (1998).

    CAS  PubMed  Google Scholar 

  70. Ollagnier-de Choudens, S. & Fontecave, M. The lipoate synthase from Escherichia coli is an iron-sulfur protein. FEBS Lett. 453, 25–28 (1999).

    CAS  PubMed  Google Scholar 

  71. Miller, J.R. et al. Escherichia coli LipA is a lipoyl synthase: in vitro biosynthesis of lipoylated pyruvate dehydrogenase complex from octanoyl-acyl carrier protein. Biochemistry 39, 15166–15178 (2000).

    CAS  PubMed  Google Scholar 

  72. Pierrel, F., Douki, T., Fontecave, M. & Atta, M. MiaB protein is a bifunctional radical-S-adenosylmethionine enzyme involved in thiolation and methylation of tRNA. J. Biol. Chem. 279, 47555–47563 (2004).

    CAS  PubMed  Google Scholar 

  73. Pierrel, F., Bjork, G.R., Fontecave, M. & Atta, M. Enzymatic modification of tRNAs: MiaB is an iron-sulfur protein. J. Biol. Chem. 277, 13367–13370 (2002).

    CAS  PubMed  Google Scholar 

  74. Gibson, K.J., Pelletier, D.A. & Turner, I.M. Transfer of sulfur to biotin from biotin synthase (BioB protein). Bioch. Biophys. Res. Commun. 254, 632–635 (1999).

    CAS  Google Scholar 

  75. Cicchillo, R.M. & Booker, S.J. Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide. J. Am. Chem. Soc. 127, 2860–2861 (2005).

    CAS  PubMed  Google Scholar 

  76. Ugulava, N.B., Sacanell, C.J. & Jarrett, J.T. Spectroscopic changes during a single turnover of biotin synthase: destruction of a 2Fe-2S cluster accompanies sulfur insertion. Biochemistry 40, 8352–8358 (2001).

    CAS  PubMed  Google Scholar 

  77. Sauerwald, A. et al. RNA-dependent cysteine biosynthesis in archaea. Science 307, 1969–1972 (2005).

    CAS  PubMed  Google Scholar 

  78. O'Donoghue, P., Sethi, A., Woese, C.R. & Luthey-Schulten, Z.A. The evolutionary history of Cys-tRNA(Cys) formation. Proc. Natl. Acad. Sci. USA 102, 19003–19008 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Burns, K.E. et al. Reconstitution of a new cysteine biosynthetic pathway in Mycobacterium tuberculosis. J. Am. Chem. Soc. 127, 11602–11603 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Stadtman, T.C. Selenium biochemistry. Annu. Rev. Biochem. 59, 111–127 (1990).

    CAS  PubMed  Google Scholar 

  81. Veres, Z., Kim, L., Scholz, T.D. & Stadtman, T.C. Selenophosphate synthetase: enzyme properties and catalytic reaction. J. Biol. Chem. 269, 10597–10603 (1994).

    CAS  PubMed  Google Scholar 

  82. Lacourciere, G.M. & Stadtman, T.C. The NifS protein can function as a selenide delivery protein in the biosynthesis of selenophosphate. J. Biol. Chem. 273, 30921–30926 (1998).

    CAS  PubMed  Google Scholar 

  83. Lacourciere, G.M. Selenium is mobilized in vivo from free selenocysteine and is incorporated specifically into formate dehydrogenase H and tRNA nucleosides. J. Bacteriol. 184, 1940–1946 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Webb, E., Claas, K. & Downs, D.M. Characterization of thiI, a new gene involved in thiazole biosynthesis in Salmonella typhimurium. J. Bacteriol. 179, 4399–4402 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mueller, E.G. & Palenchar, P.M. Using genomic information to investigate the function of ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis. Protein Sci. 8, 2424–2427 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Park, J.H. et al. Biosynthesis of the thiazole moiety of thiamin pyrophosphate (vitamin B1). Biochemistry 42, 12430–12438 (2003).

    CAS  PubMed  Google Scholar 

  87. Leonardi, R. & Roach, P.L. Thiamine biosynthesis in Escherichia coli: in vitro reconstitution of the thiazole synthase activity. J. Biol. Chem. 279, 17054–17062 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.G.M. acknowledges the US National Institutes of Health for the financial support of his research provided by grant GM59636 and G.R. Björk for providing a preprint of a manuscript in press.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene G Mueller.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, E. Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nat Chem Biol 2, 185–194 (2006). https://doi.org/10.1038/nchembio779

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing