Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Obstructive nephropathy: towards biomarker discovery and gene therapy

Abstract

Obstructive nephropathy is a major cause of renal failure, particularly in infants and children. Cellular and molecular mechanisms responsible for the progression of the tubular atrophy and interstitial fibrosis—processes that lead to nephron loss—have been elucidated in the past 5 years. Following urinary tract obstruction and tubular dilatation, a cascade of events results in upregulation of the intrarenal renin–angiotensin system, tubular apoptosis and macrophage infiltration of the interstitium. This is followed by accumulation of interstitial fibroblasts through proliferation of resident fibroblasts and epithelial–mesenchymal transformation of renal tubular cells. Under the influence of cytokines, chemokines and other signaling molecules produced by tubular and interstitial cells, fibroblasts undergo transformation to myofibroblasts that induce expansion of the extracellular matrix. The cellular interactions that regulate development of interstitial inflammation, tubular apoptosis and interstitial fibrosis are complex. Changes in renal gene expression and protein production afford many potential biomarkers of disease progression and targets for therapeutic manipulation. These include signaling molecules and receptors involved in macrophage recruitment and proliferation, tubular death signals and survival factors, and modulators of epithelial–mesenchymal transformation. Targeted gene deletion and various forms of gene therapy have been used in experimental obstructive nephropathy, mostly rodent models of unilateral ureteral obstruction or cell culture techniques. Further refinement of these models is needed to develop a matrix of biomarkers with clinical predictive value, as well as molecular therapies that will prevent or reverse the renal structural and functional consequences of obstructive nephropathy.

Key Points

  • A leading cause of chronic renal failure in children, obstructive nephropathy is characterized by inflammation, tubular atrophy and interstitial fibrosis

  • Research using rodent models in the past 5 years has shed new light on the molecular mechanisms underlying these processes

  • Current biomarkers in congenital obstructive nephropathy are urine levels of tumor-necrosis factor-α, transforming growth factor-β, monocyte chemoattractant protein-1 and epidermal growth factor

  • Potential new biomarkers of disease progression and therapeutic targets include molecules involved in macrophage recruitment and proliferation, tubular death and survival, and epithelial–mesenchymal transformation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Light micrographs illustrating renal cellular responses to complete unilateral ureteral obstruction (UUO) in the neonatal mouse.
Figure 2: Renal cellular interactions in the evolution of obstructive nephropathy.
Figure 3: Pathogenesis of renal interstitial inflammation in obstructive nephropathy.
Figure 4: Pathogenesis of renal tubular apoptosis in obstructive nephropathy.
Figure 5: Pathogenesis of renal fibrosis in obstructive nephropathy.

Similar content being viewed by others

References

  1. Seikaly MG et al. (2003) Chronic renal insufficiency in children: the 2001 annual report of the NAPRTCS. Pediatr Nephrol 18: 796–804

    Article  PubMed  Google Scholar 

  2. Chevalier RL and Peters CA (2003) Congenital urinary tract obstruction: proceedings of the state-of-the-art strategic planning workshop—National Institutes of Health, Bethesda, Maryland, USA, 11–12 March 2002. Pediatr Nephrol 18: 576–606

    PubMed  Google Scholar 

  3. Iwano M et al. (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110: 341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chevalier RL and Cachat F (2001) Role of angiotensin II in chronic ureteral obstruction. In The Renin-Angiotensin System and Progression of Renal Diseases, 250–260 (Ed. Wolf G) Basel: Karger

    Chapter  Google Scholar 

  5. Ichikawa I et al. (2002) Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 61: 889–898

    Article  PubMed  Google Scholar 

  6. Morrissey JJ and Klahr S (1997) Enalapril decreases nuclear factor κB activation in the kidney with ureteral obstruction. Kidney Int 52: 926–933

    Article  CAS  PubMed  Google Scholar 

  7. Klahr S and Morrissey J (2002) Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol 283: F861–F875

    Article  PubMed  Google Scholar 

  8. Miyajima A et al. (2003) Novel nuclear factor κB activation inhibitor prevents inflammatory injury in unilateral ureteral obstruction. J Urol 169: 1559–1563

    Article  CAS  PubMed  Google Scholar 

  9. Nakatani T et al. (2002) Role of renin-angiotensin system and nuclear factor-κB in the obstructed kidney of rats with unilateral ureteral obstruction. Jpn J Pharmacol 90: 361–364

    Article  CAS  PubMed  Google Scholar 

  10. Satoh M et al. (2001) Renal interstitial fibrosis is reduced in angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol 12: 317–325

    CAS  PubMed  Google Scholar 

  11. Tashiro K et al. (2003) Attenuation of renal fibrosis by proteasome inhibition in rat obstructive nephropathy: possible role of nuclear factor κB. Int J Mol Med 12: 587–592

    CAS  PubMed  Google Scholar 

  12. Nagatoya K et al. (2002) Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int 61: 1684–1695

    Article  CAS  PubMed  Google Scholar 

  13. Lange-Sperandio B et al. (2002) Selectins mediate macrophage infiltration in obstructive nephropathy in newborn mice. Kidney Int 61: 516–524

    Article  CAS  PubMed  Google Scholar 

  14. Naruse T et al. (2002) P-selectin-dependent macrophage migration into the tubulointerstitium in unilateral ureteral obstruction. Kidney Int 62: 94–105

    Article  CAS  PubMed  Google Scholar 

  15. Ogawa D et al. (2004) Cerebroside sulfotransferase deficiency ameliorates L-selectin-dependent monocyte infiltration in the kidney after ureteral obstruction. J Biol Chem 279: 2085–2090

    Article  CAS  PubMed  Google Scholar 

  16. Takeda A et al. (2000) Role of leukocyte adhesion molecules in monocyte/macrophage infiltration in weanling rats with unilateral ureteral obstruction. Int J Urol 7: 415–420

    Article  CAS  PubMed  Google Scholar 

  17. Lange-Sperandio B et al.: Distinct roles of Mac-1 and its counter-receptors in neonatal obstructive nephropathy. Kidney Int, in press

  18. Cheng QL et al. (2000) Effects of ICAM-1 antisense oligonucleotide on the tubulointerstitium in mice with unilateral ureteral obstruction. Kidney Int 57: 183–190

    Article  CAS  PubMed  Google Scholar 

  19. Yamagishi H et al. (2001) Genetically modified bone marrow-derived vehicle cells site specifically deliver an anti-inflammatory cytokine to inflamed interstitium of obstructive nephropathy. J Immunol 166: 609–616

    Article  CAS  PubMed  Google Scholar 

  20. Vielhauer V et al. (2001) Obstructive nephropathy in the mouse: progressive fibrosis correlates with tubulointerstitial chemokine expression and accumulation of CC chemokine receptor 2- and 5-positive leukocytes. J Am Soc Nephrol 12: 1173–1187

    CAS  PubMed  Google Scholar 

  21. Wada T et al. (2004) Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. J Am Soc Nephrol 15: 940–948

    Article  CAS  PubMed  Google Scholar 

  22. Pittock ST et al. (2005) MCP-1 is up-regulated in unstressed and stressed HO-1 knockout mice: pathophysiologic correlates. Kidney Int 68: 611–622

    Article  CAS  PubMed  Google Scholar 

  23. Lenda DM et al. (2003) Reduced macrophage recruitment, proliferation, and activation in colony-stimulating factor-1-deficient mice results in decreased tubular apoptosis during renal inflammation. J Immunol 170: 3254–3262

    Article  CAS  PubMed  Google Scholar 

  24. Kitagawa K et al. (2004) Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol 165: 237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eis V et al. (2004) Chemokine receptor CCR1 but not CCR5 mediates leukocyte recruitment and subsequent renal fibrosis after unilateral ureteral obstruction. J Am Soc Nephrol 15: 337–347

    Article  CAS  PubMed  Google Scholar 

  26. Anders HJ et al. (2002) A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J Clin Invest 109: 251–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lange-Sperandio B et al. (2005) A2A adenosine receptor agonist and PDE4 inhibition delays inflammation but fails to reduce injury in experimental obstructive nephropathy. Nephron Exp Nephrol 100: e113–e123

    Article  CAS  PubMed  Google Scholar 

  28. Schaier M et al. (2003) Retinoid agonist isotretinoin ameliorates obstructive renal injury. J Urol 170: 1398–1402

    Article  CAS  PubMed  Google Scholar 

  29. Hochberg D et al. (2000) Interstitial fibrosis of unilateral ureteral obstruction is exacerbated in kidneys of mice lacking the gene for inducible nitric oxide synthase. Lab Invest 80: 1721–1728

    Article  CAS  PubMed  Google Scholar 

  30. Ito K et al. (2004) Liposome-mediated transfer of nitric oxide synthase gene improves renal function in ureteral obstruction in rats. Kidney Int 66: 1365–1375

    Article  CAS  PubMed  Google Scholar 

  31. Chevalier RL (2004) Promise for gene therapy in obstructive nephropathy. Kidney Int 66: 1709–1710

    Article  CAS  PubMed  Google Scholar 

  32. Ophascharoensuk V et al. (1999) Obstructive uropathy in the mouse: role of osteopontin in interstitial fibrosis and apoptosis. Kidney Int 56: 571–580

    Article  CAS  PubMed  Google Scholar 

  33. Rouschop KMA et al. (2004) CD44 deficiency increases tubular damage but reduces renal fibrosis in obstructive nephropathy. J Am Soc Nephrol 15: 674–686

    Article  CAS  PubMed  Google Scholar 

  34. Zhang G et al. (2003) Urokinase receptor modulates cellular and angiogenic responses in obstructive nephropathy. J Am Soc Nephrol 14: 1234–1253

    Article  CAS  PubMed  Google Scholar 

  35. Nishida M et al. (2002) Absence of angiotensin II type 1 receptor in bone marrow-derived cells is detrimental in the evolution of renal fibrosis. J Clin Invest 110: 1859–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gobe GC and Axelsen RA (1987) Genesis of renal tubular atrophy in experimetal hydronephrosis in the rat. Lab Invest 56: 273–281

    CAS  PubMed  Google Scholar 

  37. Cachat F et al. (2003) Ureteral obstruction in neonatal mice elicits segment-specific tubular cell responses leading to nephron loss. Kidney Int 63: 564–575

    Article  PubMed  Google Scholar 

  38. Miyajima A et al. (2000) Interaction of nitric oxide and transforming growth factor-β1 induced by angiotensin II and mechanical stretch in rat renal tubular epithelial cells. J Urol 164: 1729–1734

    Article  CAS  PubMed  Google Scholar 

  39. Dai C et al. (2003) Transforming growth factor-β1 potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling. J Biol Chem 278: 12537–12545

    Article  CAS  PubMed  Google Scholar 

  40. Choi YJ et al. (2001) Role of p53-dependent activation of caspases in chronic obstructive uropathy: evidence from p53 null mutant mice. J Am Soc Nephrol 12: 983–992

    CAS  PubMed  Google Scholar 

  41. Miyajima A et al. (2000) Antibody to transforming growth factor-β ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int 58: 2301–2313

    Article  CAS  PubMed  Google Scholar 

  42. Bhaskaran M et al. (2003) Angiotensin II induces apoptosis in renal proximal tubular cells. Am J Physiol 284: F955–F965

    CAS  Google Scholar 

  43. Inguaggiato P et al. (2001) Cellular overexpression of heme oxygenase-1 up-regulates p21 and confers resistance to apoptosis. Kidney Int 60: 2181–2191

    Article  CAS  PubMed  Google Scholar 

  44. Power RE et al. (2004) Mechanical deformation induced apoptosis in human proximal renal tubular epithelial cells is caspase dependent. J Urol 171: 457–461

    Article  CAS  PubMed  Google Scholar 

  45. Miyajima A et al. (2001) Role of nitric oxide in renal tubular apoptosis of unilateral ureteral obstruction. Kidney Int 59: 1290–1303

    Article  CAS  PubMed  Google Scholar 

  46. Chevalier RL et al. (1998) Obstructive nephropathy in the neonatal rat is attenuated by epidermal growth factor. Kidney Int 54: 38–47

    Article  CAS  PubMed  Google Scholar 

  47. Chevalier RL et al. (2000) Renal tubulointerstitial injury from ureteral obstruction in the neonatal rat is attenuated by IGF-1. Kidney Int 57: 882–890

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen HT et al. (2000) Heparin-binding EGF-like growth factor is up-regulated in the obstructed kidney in a cell- and region-specific manner and acts to inhibit apoptosis. Am J Pathol 156: 889–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chung KH and Chevalier RL (1996) Arrested development of the neonatal kidney following chronic ureteral obstruction. J Urol 155: 1139–1144

    Article  CAS  PubMed  Google Scholar 

  50. Kiley SC et al. (2005) Epidermal growth factor potentiates renal cell death in hydronephrotic neonatal mice, but cell survival in rats. Kidney Int 68: 504–514

    Article  CAS  PubMed  Google Scholar 

  51. Kiley SC et al.: Of mice and men: species differences in epidermal growth factor signaling determine renal cell survival or death. J Am Soc Nephrol, in press

  52. Lange-Sperandio B et al. (2003) Macrophages induce apoptosis in proximal tubule cells. Pediatr Nephrol 18: 335–341

    PubMed  Google Scholar 

  53. Misseri R et al. (2004) TNF-α mediates obstruction-induced renal tubular cell apoptosis and proapoptotic signaling. Am J Physiol 288: F406–F411

    Google Scholar 

  54. Malik RK et al. (2001) Renal apoptosis parallels ceramide content following chronic ureteral obstruction in the neonatal rat. Am J Physiol 281: F56–F61

    CAS  Google Scholar 

  55. Basnakian AG et al. (2004) Ceramide synthesis is essential for endonuclease-mediated death of renal tubular epithelial cells induced by hypoxia-reoxygenation. Am J Physiol 288: F308–F314

    Google Scholar 

  56. Sunami R et al. (2004) Acatalasemia sensitizes renal tubular epithelial cells to apoptosis and exacerbates renal fibrosis after unilateral ureteral obstruction. Am J Physiol 286: F1030–F1038

    CAS  Google Scholar 

  57. Kinter M et al. (1999) Unilateral ureteral obstruction impairs renal antioxidant enzyme activation during sodium depletion. Kidney Int 55: 1327–1334

    Article  CAS  PubMed  Google Scholar 

  58. Moriyama T et al. (2001) Fluvastatin suppresses oxidative stress and fibrosis in the interstitium of mouse kidneys with unilateral ureteral obstruction. Kidney Int 59: 2095–2103

    Article  CAS  PubMed  Google Scholar 

  59. Pat B et al. (2005) Activation of ERK in renal fibrosis after unilateral ureteral obstruction: modulation by antioxidants. Kidney Int 67: 931–943

    Article  CAS  PubMed  Google Scholar 

  60. Kiley SC et al. (2003) Growth factor-mediated phosphorylation of proapoptotic BAD reduces tubule cell death in vitro and in vivo. Kidney Int 63: 33–42

    Article  CAS  PubMed  Google Scholar 

  61. Chevalier RL et al. (2000) Chronic ureteral obstruction in the rat suppresses renal tubular bcl-2 and stimulates apoptosis. Exp Nephrol 8: 115–122

    Article  CAS  PubMed  Google Scholar 

  62. Peherstorfer E et al. (2002) Effects of microinjection of synthetic Bcl-2 domain peptides on apoptosis of renal tubular epithelial cells. Am J Physiol 283: F190–F196

    CAS  Google Scholar 

  63. Gao X et al. (2002) Hepatocyte growth factor gene therapy retards the progression of chronic obstructive nephropathy. Kidney Int 62: 1238–1248

    Article  CAS  PubMed  Google Scholar 

  64. Yukawa K et al. (2004) Deletion of the kinase domain in death-associated protein kinase attenuates renal tubular cell apoptosis in chronic obstructive uropathy. Int J Mol Med 13: 515–520

    CAS  PubMed  Google Scholar 

  65. Hughes J and Johnson RJ (1999) Role of Fas (CD95) in tubulointerstitial disease induced by unilateral ureteric obstruction. Am J Physiol 277: F26–F32

    CAS  PubMed  Google Scholar 

  66. Hruska KA et al. (2000) Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am J Physiol Renal Physiol 279: F130–F143

    Article  CAS  PubMed  Google Scholar 

  67. Ophascharoensuk V et al. (1998) The cyclin-dependent kinase inhibitor p27Kip1 safeguards against inflammatory injury. Nat Med 4: 575–580

    Article  CAS  PubMed  Google Scholar 

  68. Schaefer L et al. (2002) Absence of decorin adversely influences tubulointerstitial fibrosis of the obstructed kidney by enhanced apoptosis and increased inflammatory reaction. Am J Pathol 160: 1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fern RJ et al. (1999) Reduced angiotensinogen expression attenuates renal interstitial fibrosis in obstructive nephropathy in mice. J Clin Invest 103: 39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shin GT et al. (2005) Effects of suppressing intrarenal angiotensinogen on renal transforming growth factor-β1 expression in acute ureteral obstruction. Kidney Int 67: 897–908

    Article  CAS  PubMed  Google Scholar 

  71. Chen CO et al. (2005) Angiotensin converting enzyme inhibition worsens renal interstitial injury from unilateral ureteral obstruction in the neonatal rat. J Am Soc Nephrol 17: 222A

    Google Scholar 

  72. Morrissey JJ et al. (1996) Nitric oxide generation ameliorates the tubulointerstitial fibrosis of obstructive nephropathy. J Am Soc Nephrol 7: 2202–2212

    CAS  PubMed  Google Scholar 

  73. Schanstra JP et al. (2002) In vivo bradykinin B2 receptor activation reduces renal fibrosis. J Clin Invest 110: 371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fukuda K et al. (2001) Quantification of TGF-β1 mRNA along rat nephron in obstructive nephropathy. Am J Physiol Renal Physiol 281: F513–F521

    Article  CAS  PubMed  Google Scholar 

  75. Kaneto H et al. (1999) Increased expression of TGF-β1 but not of its receptors contributes to human obstructive nephropathy. Kidney Int 56: 2137–2146

    Article  CAS  PubMed  Google Scholar 

  76. Isaka Y et al. (2000) Transforming growth factor-β1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int 58: 1885–1892

    Article  CAS  PubMed  Google Scholar 

  77. Zavadil J et al. (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc Natl Acad Sci USA 98: 6686–6691

    Article  CAS  PubMed  Google Scholar 

  78. Fukasawa H et al. (2004) Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc Natl Acad Sci USA 101: 8687–8692

    Article  CAS  PubMed  Google Scholar 

  79. Sato M et al. (2003) Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112: 1486–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Inazaki K et al. (2004) Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int 66: 597–604

    Article  CAS  PubMed  Google Scholar 

  81. Lan HY et al. (2003) Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 14: 1535–1548

    Article  CAS  PubMed  Google Scholar 

  82. Yang J et al. (2003) Downregulation of Smad transcriptional corepressors SnoN and Ski in the fibrotic kidney: an amplification mechanism for TGF-β1 signaling. J Am Soc Nephrol 14: 3167–3177

    Article  CAS  PubMed  Google Scholar 

  83. Yang J and Liu Y (2002) Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J Am Soc Nephrol 13: 96–107

    CAS  PubMed  Google Scholar 

  84. Yang J et al. (2003) Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am J Pathol 163: 621–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang J et al. (2005) A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition. J Am Soc Nephrol 16: 68–78

    Article  CAS  PubMed  Google Scholar 

  86. Yang J and Liu Y (2003) Delayed administration of hepatocyte growth factor reduces renal fibrosis in obstructive nephropathy. Am J Physiol 284: F349–F357

    Article  CAS  Google Scholar 

  87. Wamsley-Davis A et al. (2004) AT1A-mediated activation of kidney JNK1 and SMAD2 in obstructive uropathy: preservation of kidney tissue mass using candesartan. Am J Physiol Renal Physiol 287: F474–F480

    Article  CAS  PubMed  Google Scholar 

  88. Yang J et al. (2002) Hepatocyte growth factor gene therapy and angiotensin II blockade synergistically attenuate renal interstitial fibrosis in mice. J Am Soc Nephrol 13: 2464–2477

    Article  CAS  PubMed  Google Scholar 

  89. Nakamura H et al. (2002) Introduction of DNA enzyme for Egr-1 into tubulointerstitial fibroblasts by electroporation reduced interstitial alpha-smooth muscle actin expression and fibrosis in unilateral ureteral obstruction (UUO) rats. Gene Ther 9: 495–502

    Article  CAS  PubMed  Google Scholar 

  90. Taneda S et al. (2003) Obstructive uropathy in mice and humans: potential role for PDGF-D in the progression of tubulointerstitial injury. J Am Soc Nephrol 14: 2544–2555

    Article  CAS  PubMed  Google Scholar 

  91. Ludewig D et al. (2000) PDGF receptor kinase blocker AG1295 attenuates interstitial fibrosis in rat kidney after unilateral obstruction. Cell Tissue Res 299: 97–103

    Article  CAS  PubMed  Google Scholar 

  92. Yokoi H et al. (2001) Role of connective tissue growth factor in profibrotic action of transforming growth factor-β: a potential target for preventing renal fibrosis. Am J Kidney Dis 38 (Suppl): S134–S138

    Article  CAS  PubMed  Google Scholar 

  93. Yokoi H et al. (2004) Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulinterstitial fibrosis. J Am Soc Nephrol 15: 1430–1440

    Article  CAS  PubMed  Google Scholar 

  94. Stambe C et al. (2004) The role of p38α mitogen-activated protein kinase activation in renal fibrosis. J Am Soc Nephrol 15: 370–379

    Article  CAS  PubMed  Google Scholar 

  95. Ishidoya S et al. (2002) Plasminogen activator inhibitor-1 and tissue-type plasminogen activator are up-regulated during unilateral ureteral obstruction in adult rats. J Urol 167: 1503–1507

    Article  CAS  PubMed  Google Scholar 

  96. Oda T et al. (2001) PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int 60: 587–596

    Article  CAS  PubMed  Google Scholar 

  97. Matsuo S et al. (2005) Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. Kidney Int 67: 2221–2238

    Article  CAS  PubMed  Google Scholar 

  98. Yang JW et al. (2002) Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest 110: 1525–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang G et al. (2005) Urokinase receptor deficiency accelerates renal fibrosis in obstructive nephropathy. J Am Soc Nephrol 14: 1254–1271

    Article  CAS  Google Scholar 

  100. Kim HS et al. (2001) TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 12: 736–748

    CAS  PubMed  Google Scholar 

  101. Hughes J et al. (1999) Cyclin kinase inhibitor p21CIP1/WAF1 limits interstitial cell proliferation following ureteric obstruction. Am J Physiol Renal Physiol 277: F948–F956

    Article  CAS  Google Scholar 

  102. Morrissey J et al. (2002) Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol 13: S14–S21

    Article  CAS  PubMed  Google Scholar 

  103. Lin J et al. (2005) Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat Med 11: 387–393

    Article  CAS  PubMed  Google Scholar 

  104. Abreu JG et al. (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nat Cell Biol 4: 599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ingelfinger JR (2003) Forestalling fibrosis. N Engl J Med 349: 2265–2266

    Article  CAS  PubMed  Google Scholar 

  106. Fogo AB (2003) The potential for regression of renal scarring. Curr Opin Nephrol Hypertens 12: 223–225

    Article  PubMed  Google Scholar 

  107. Chevalier RL (2004) Biomarkers of congenital obstructive nephropathy: past, present and future. J Urol 172: 852–857

    Article  PubMed  Google Scholar 

  108. Valles P et al. (2003) Role of endogenous nitric oxide in unilateral ureteroplevic junction obstruction in children. Kidney Int 63: 1104–1115

    Article  CAS  PubMed  Google Scholar 

  109. El Sherbiny MT et al. (2002) Role of urinary transforming growth factor-β1 concentration in the diagnosis of upper urinary tract obstruction in children. J Urol 168: 1798–1800

    Article  CAS  PubMed  Google Scholar 

  110. Furness PD III et al. (1999) Elevated bladder urine concentration of transforming growth factor-β1 correlates with upper urinary tract obstruction in children. J Urol 162: 1033–1036

    Article  PubMed  Google Scholar 

  111. Yang BY et al. (2003) The expression of epidermal growth factor and transforming growth factor-β1 in the stenotic tissue of congenital pelvi-ureteric junction obstruction in children. J Pediatr Surg 38: 1656–1660

    Article  PubMed  Google Scholar 

  112. Grandaliano G et al. (2000) MCP-1 and EGF renal expression and urine excretion in human congenital obstructive nephropathy. Kidney Int 58: 182–192

    Article  CAS  PubMed  Google Scholar 

  113. Stephan M et al. (2002) Urinary concentration and tissue messenger RNA expression of monocyte chemoattractant protein-1 as an indicator of the degree of hydronephrotic atrophy in partial ureteral obstruction. J Urol 167: 1497–1502

    Article  PubMed  Google Scholar 

  114. Chiou YY et al. (2004) Factors associated with the outcomes of children with unilateral ureteropelvic junction obstruction. J Urol 171: 397–402

    Article  PubMed  Google Scholar 

  115. Seseke F et al. (2004) Characterization of an animal model of spontaneous congenital unilateral obstructive uropathy by cDNA microarray analysis. Eur Urol 45: 374–381

    Article  CAS  PubMed  Google Scholar 

  116. Chevalier RL (2004) Perinatal obstructive nephropathy. Semin Nephrol 28: 124–131

  117. Chevalier RL et al. (1996) Renal apoptosis and clusterin following ureteral obstruction: the role of maturation. J Urol 156: 1474–1479

    Article  CAS  PubMed  Google Scholar 

  118. Chevalier RL et al. (1999) Recovery following relief of unilateral ureteral obstruction in the neonatal rat. Kidney Int 55: 793–807

    Article  CAS  PubMed  Google Scholar 

  119. Fujinaka H et al. (2000) Salutary role for angiotensin in partial urinary tract obstruction. Kidney Int 58: 2018–2027

    Article  CAS  PubMed  Google Scholar 

  120. Yoo KH et al. (2005) Inducible nitric oxide synthase modulates hydronephrosis following partial or complete unilateral ureteral obstruction in the neonatal mouse. J Am Soc Nephrol 17: 421A

    Google Scholar 

  121. Seseke F et al. (2001) Impaired nephrogenesis in rats with congenital obstructive uropathy. J Urol 165: 2289–2292

    Article  CAS  PubMed  Google Scholar 

  122. Bascands JL and Schanstra JP (2005) Obstructive nephropathy: insights from genetically engineered animals. Kidney Int 68: 925–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Imai E (2003) Gene therapy for renal diseases: its potential and limitation. J Am Soc Nephrol 14: 1102–1104

    Article  PubMed  Google Scholar 

  124. Ito K et al. (2004) Liposome-mediated gene therapy in the kidney. Human Cell 17: 17–28

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author's studies are supported by grants from the National Institutes of Health: DK52612, DK45179, and DK62328. Photomicrographs (Figure 1) were produced by Michael S Forbes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L Chevalier.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevalier, R. Obstructive nephropathy: towards biomarker discovery and gene therapy. Nat Rev Nephrol 2, 157–168 (2006). https://doi.org/10.1038/ncpneph0098

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0098

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing