Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: infection and spondyloarthritis

Abstract

There is compelling evidence that some infections can initiate a chronic nonseptic arthritis. This has proved to be an important area of investigation into gene–environment interactions, particularly since HLA-B27 confers increased susceptibility to reactive arthritis. This research has investigated the microbiology of these events, and the strategies used by pathogens to induce chronic joint inflammation. Insights into the HLA-orchestrated immune response in this context have also shed light on the impact of HLA-B27 on immunity, which might provide insights into the mechanism of other HLA-B27-associated diseases. Despite the genetic link to reactive arthritis, there is no proven relationship between ankylosing spondylitis and an inciting infection. In general, most trials have found antibiotics to be ineffective in modifying the course of spondyloarthritis.

Key Points

  • Infection is the initiating event in reactive arthritis, which can become chronic arthritis

  • The basis of this event is not understood but HLA-B27 might modulate immune responses to the pathogen

  • The role of infection in other HLA-B27-associated diseases, such as ankylosing spondylitis, has not been proven

  • Antibiotics have generally not been shown to be effective in spondyloarthritis trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spondyoarthritis subsets.
Figure 2: Factors involved in the pathogenesis of the various spondyoarthritis subsets.

Similar content being viewed by others

References

  1. Sieper J et al. (2002) Diagnosing reactive arthritis: role of clinical setting in the value of serologic and microbiologic assays. Arthritis Rheum 46: 319–327

    Article  Google Scholar 

  2. Fendler C et al. (2001) Frequency of triggering bacteria in patients with reactive arthritis and undifferentiated oligoarthritis and the relative importance of the tests used for diagnosis. Ann Rheum Dis 60: 337–343

    Article  CAS  Google Scholar 

  3. Nikkari S et al. (2001) Use of a peptide based enzyme immunoassay in diagnosis of Chlamydia trachomatis triggered reactive arthritis. J Rheumatol 28: 2487–2493

    CAS  PubMed  Google Scholar 

  4. Soderlin MK et al. (2002) Annual incidence of inflammatory joint diseases in a population based study in southern Sweden. Ann Rheum Dis 61: 911–915

    Article  CAS  Google Scholar 

  5. Buxton JA et al. (2002) Reactive arthritis and other sequelae following sporadic Salmonella typhimurium infection in British Columbia, Canada: a case control study. J Rheumatol 29: 2154–2158

    PubMed  Google Scholar 

  6. Hannu T et al. (2002) Reactive arthritis following an outbreak of Salmonella typhimurium phage type 193 infection. Ann Rheum Dis 61: 264–266

    Article  CAS  Google Scholar 

  7. Locht H et al. (2002) High frequency of reactive joint symptoms after an outbreak of Salmonella enteritidis. J Rheumatol 29: 767–771

    PubMed  Google Scholar 

  8. Hannu T et al. (2002) Campylobacter-triggered reactive arthritis: a population-based study. Rheumatol 41: 312–318

    Article  CAS  Google Scholar 

  9. Boyer GS et al. (1999) Spondyloarthropathy in the community: clinical syndromes and disease manifestations in Alaskan Eskimo populations. J Rheumatol 26: 1537–1544

    CAS  PubMed  Google Scholar 

  10. Rudwaleit M et al. (2001) Low incidence of reactive arthritis in children following a Salmonella outbreak. Ann Rheum Dis 60: 1055–1057

    Article  CAS  Google Scholar 

  11. Taurog JD et al. (1994) The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 180: 2359–2964

    Article  CAS  Google Scholar 

  12. Colmegna I et al. (2004) HLA-B27-associated reactive arthritis: pathogenetic and clinical considerations. Clin Microbiol Rev 17: 348–369

    Article  CAS  Google Scholar 

  13. Soderlin MK et al. (2003) Infections preceding early arthritis in southern Sweden: a prospective population-based study. J Rheumatol 30: 459–464

    PubMed  Google Scholar 

  14. Gerard HC et al. (1998) Synovial Chlamydia trachomatis in patients with reactive arthritis/Reiter's syndrome are viable but show aberrant gene expression. J Rheumatol 25: 734–742

    CAS  PubMed  Google Scholar 

  15. Kuipers JG et al. (1998) Detection of Chlamydia trachomatis in peripheral blood leukocytes of reactive arthritis patients by polymerase chain reaction. Arthritis Rheum 41: 1894–1895

    Article  CAS  Google Scholar 

  16. Schumacher HR Jr et al. (1988) Light and electron microscopic studies on the synovial membrane in Reiter's syndrome. Immunocytochemical identification of chlamydial antigen in patients with early disease. Arthritis Rheum 31: 937–946

    Article  Google Scholar 

  17. Kuipers JG et al. (2003) How does Chlamydia cause arthritis? Rheum Dis Clin North Am 29: 613–629

    Article  Google Scholar 

  18. Morrison RP (2003) New insights into a persistent problem—chlamydial infections. J Clin Invest 111: 1647–1649

    Article  CAS  Google Scholar 

  19. Zeidler H et al. (2004) Chlamydia-induced arthritis. Curr Opin Rheumatol 16: 380–392

    Article  Google Scholar 

  20. Tse SM et al. (2005) Accumulation of diacylglycerol in the Chlamydia inclusion vacuole: possible role in the inhibition of host cell apoptosis. J Biol Chem 280: 25210–25215

    Article  CAS  Google Scholar 

  21. Jendro MC et al. (2004) Chlamydia trachomatis-infected macrophages induce apoptosis of activated T cells by secretion of tumor necrosis factor-alpha in vitro. Med Microbiol Immunol 193: 45–52

    Article  CAS  Google Scholar 

  22. Chen T et al. (2003) Bacterial components in the synovial tissue of patients with advanced rheumatoid arthritis or osteoarthritis: analysis with gas chromatography–mass spectrometry and pan-bacterial polymerase chain reaction. Arthritis Rheum 49: 328–334

    Article  CAS  Google Scholar 

  23. Zhang X et al. (2003) Microbe hunting in the joints. Arthritis Rheum 49: 479–482

    Article  Google Scholar 

  24. Stone MA et al. (2004) Comparative immune responses to candidate arthritogenic bacteria do not confirm a dominant role for Klebsiella pneumoniae in the pathogenesis of familial ankylosing spondylitis. Rheumatol 43: 148–155

    Article  CAS  Google Scholar 

  25. Katona IM et al. (1991) Modulation of monocyte chemotactic function in inflammatory lesions. Role of inflammatory mediators. J Immunol 146: 708–714

    CAS  PubMed  Google Scholar 

  26. Zhang X et al. (2004) Synovial fibroblasts infected with Salmonella enterica serovar typhimurium mediate osteoclast differentiation and activation. Infec Immun 72: 7183–7189

    Article  CAS  Google Scholar 

  27. Braun J et al. (1999) Low secretion of tumor necrosis factor alpha, but no other TH1 or TH2 cytokines, by peripheral blood mononuclear cells correlates with chronicity in reactive arthritis. Arthritis Rheum 42: 2039–44

    Article  CAS  Google Scholar 

  28. Anttonen K et al. Aberrant TNF secretion by whole blood in healthy subjects with a history of reactive arthritis. Time course in adherent and non-adherent cultures. Ann Rheum Dis, in press

  29. Ekman P et al. (2002) HLA-B27-transfected (Salmonella permissive) and HLA-A2-transfected (Salmonella nonpermissive) human monocytic U937 cells differ in their production of cytokines. Infect Immun 70: 1609–1614

    Article  CAS  Google Scholar 

  30. Penttinen MA et al. (2002) HLA-B27 modulates nuclear factor kappaB activation in human monocytic cells exposed to lipopolysaccharide. Arthritis Rheum 46: 2172–2180

    Article  CAS  Google Scholar 

  31. Penttinen MA et al. (2004) Enhanced intracellular replication of Salmonella enteritidis in HLA-B27-expressing human monocytic cells: dependency on glutamic acid at position 45 in the B pocket of HLA-B27. Arthritis Rheum 50: 2255–2263

    Article  CAS  Google Scholar 

  32. Young JL et al. (2001) HLA-B27 expression does not modulate intracellular Chlamydia trachomatis infection of cell lines. Infect Immun 69: 6670–6675

    Article  CAS  Google Scholar 

  33. Inman RD and Payne U (2003) Determinants of synoviocyte clearance of arthritogenic bacteria. J Rheumatol 30: 1291–1297

    CAS  PubMed  Google Scholar 

  34. Ringrose JH et al. (2004) Major histocompatibility complex class I peptide presentation after Salmonella enterica serovar typhimurium infection assessed via stable isotope tagging of the B27-presented peptide repertoire. Infec Immun 72: 5097–5105

    Article  CAS  Google Scholar 

  35. Dulphy N et al. (2002) Functional modulation of expanded CD8+ synovial fluid T cells by NK cell receptor expression in HLA-B27-associated reactive arthritis. Int Immunol 14: 471–479

    Article  CAS  Google Scholar 

  36. Ren EC et al. (1997) Possible protective role of HLA-B*2706 for ankylosing spondylitis. Tissue Antigens 49: 67–69

    Article  CAS  Google Scholar 

  37. D'Amato M et al. (1995) Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis. Eur J Immunol 25: 3199–3201

    Article  CAS  Google Scholar 

  38. Fiorillo MT et al. (1998) The naturally occurring polymorphism Asp116→His116, differentiating the ankylosing spondylitis-associated HLA-B*2705 from the non-associated HLA-B*2709 subtype, influences peptide-specific CD8 T cell recognition. Eur J Immunol 28: 2508–2516

    Article  CAS  Google Scholar 

  39. Ugrinovic S et al. (1997) A single nonamer from the Yersinia 60-kDa heat shock protein is the target of HLA-B27-restricted CTL response in Yersinia-induced reactive arthritis. J Immunol 159: 5715–5723

    CAS  PubMed  Google Scholar 

  40. Ackermann B et al. (1997) Enterobacteria-infected T cells as antigen-presenting cells for cytotoxic CD8 T cells: a contribution to the self-limitation of cellular immune reactions in reactive arthritis? J Infect Dis 175: 1121–1127

    Article  CAS  Google Scholar 

  41. Kuon W et al. (2001) Identification of HLA-B27-restricted peptides from the Chlamydia trachomatis proteome with possible relevance to HLA-B27-associated diseases. J Immunol 167: 4738–4746

    Article  CAS  Google Scholar 

  42. Appel H et al. (2004) Use of HLA-B27 tetramers to identify low-frequency antigen-specific T cells in Chlamydia-triggered reactive arthritis. Arthritis Res Ther 6: R521–34

    Article  CAS  Google Scholar 

  43. Lopez-Larrea C et al. (1998) The role of HLA-B27 polymorphism and molecular mimicry in spondylarthropathy. Mol Med Today 4: 540–549

    Article  CAS  Google Scholar 

  44. Williams RC et al. (1992) Molecular mimicry, ankylosing spondylitis and reactive arthritis—something missing? Scand J Rheumatol 21: 105–108

    Article  Google Scholar 

  45. Lo WF et al. (2000) Molecular mimicry mediated by MHC class Ib molecules after infection with gram-negative pathogens. Nat Med 6: 215–218

    Article  CAS  Google Scholar 

  46. Albert LJ and Inman RD (2000) Gram-negative pathogens and molecular mimicry: is there a case for mistaken identity? Trends Microbiol 8: 444–445

    Article  CAS  Google Scholar 

  47. Ramos M et al. (2002) Molecular mimicry of an HLA-B27-derived ligand of arthritis-linked subtypes with chlamydial proteins. J Biol Chem 277: 37573–37581

    Article  CAS  Google Scholar 

  48. Popov I et al. (2001) The effect of an anti-HLA-B27 immune response on CTL recognition of Chlamydia. J Immunol 167: 3375–3382

    Article  CAS  Google Scholar 

  49. Popov I et al. (2002) Breakdown of CTL tolerance to self HLA-B*2705 induced by exposure to Chlamydia trachomatis. J Immunol 169: 4033–4038

    Article  CAS  Google Scholar 

  50. Thomson GT et al. (1995) Post-Salmonella reactive arthritis: late clinical sequelae in a point source cohort. Am J Med 98: 13–21

    Article  CAS  Google Scholar 

  51. Sieper J et al. (1999) No benefit of long-term ciprofloxacin treatment in patients with reactive arthritis and undifferentiated oligoarthritis: a three-month, multicenter, double-blind, randomized, placebo-controlled study. Arthritis Rheum 42: 1386–1396

    Article  CAS  Google Scholar 

  52. Laasila K et al. (2003) Antibiotic treatment and long term prognosis of reactive arthritis. Ann Rheum Dis 62: 655–658

    Article  CAS  Google Scholar 

  53. Smieja M et al. (2001) Randomised, blinded, placebo controlled trial of doxycycline for chronic seronegative arthritis. Ann Rheum Dis 60: 1088–1094

    Article  CAS  Google Scholar 

  54. Carter JD et al. (2004) Doxycycline versus doxycycline and rifampin in undifferentiated spondyloarthropathy, with special reference to Chlamydia-induced arthritis. A prospective, randomized 9-month comparison. J Rheumatol 31: 1973–1980

    CAS  PubMed  Google Scholar 

  55. Yli-Kerttula T et al. (2000) Effect of a three month course of ciprofloxacin on the outcome of reactive arthritis. Ann Rheum Dis 59: 565–570

    Article  CAS  Google Scholar 

  56. Yli-Kerttula T et al. (2003) Effect of a three month course of ciprofloxacin on the late prognosis of reactive arthritis. Ann Rheum Dis 62: 880–884

    Article  CAS  Google Scholar 

  57. Kvien TK et al. (2004) Three month treatment of reactive arthritis with azithromycin: a EULAR double blind, placebo controlled study. Ann Rheum Dis 63: 1113–1119

    Article  CAS  Google Scholar 

  58. Tulassay Z et al. (2001) One week of treatment with esomeprazole-based triple therapy eradicates Helicobacter pylori and heals patients with duodenal ulcer disease. Eur J Gastroenterol Hepatol 13: 1457–65

    Article  CAS  Google Scholar 

  59. Inman RD and Perl A (2005) Infectious agents in chronic rheumatic diseases. In Arthritis and Allied Conditions 15th Edition, 647–677 (Ed Koopman WJ et al.), Philadelphia

    Google Scholar 

  60. Przyklenk B et al. (1990) The role of Campylobacter (Helicobacter) pylori in disorders of the gastrointestinal tract. Infection 18: 3–7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D Inman.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inman, R. Mechanisms of Disease: infection and spondyloarthritis. Nat Rev Rheumatol 2, 163–169 (2006). https://doi.org/10.1038/ncprheum0118

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing