Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroendocrine–immune interactions in synovitis

Abstract

Synovial tissue lines the noncartilaginous surfaces of synovial joints and supplies these avascular structures with nutrients. In diseases such as rheumatoid arthritis, inflammation of the synovial tissue—synovitis—induces diffuse damage to the joints. The presence of functional receptors for glucocorticoids, androgens and estrogens in synoviocytes might link inflammation and the endocrine system at the local level. Synovial tissue could be regarded as an intracrine tissue, whereby active steroids influence the cells in which they are synthesized, without their release into the extracellular space. An increase in the peripheral metabolism of sex steroids is characteristic of rheumatoid synovitis, with an augmented ratio of estrogen to androgen occurring in both male and female patients. Changes in the peripheral nervous system at the site of local inflammation are also hallmarks of synovitis in rheumatoid arthritis. In the chronic phase of synovitis, sympathetic nerve fibers are lost; by contrast, sensory nerve fibers sprout into the inflamed tissue. Complex interactions occur between the endocrine, nervous and immune systems during synovitis. In particular, studying neuroendocrine–immune interactions in the inflamed synovium will potentially uncover new mechanisms in the pathophysiology of rheumatoid arthritis and might lead to new methods of therapeutic intervention.

Key Points

  • The presence of functional glucocorticoid, androgen and estrogen receptors in synoviocytes links the endocrine system and the immune response/inflammation at a local level

  • The synovial tissue might be considered as an intracrine tissue, whereby the effects of active steroids occur in the same cells in which they are made

  • Increased peripheral metabolism of sex steroids occurs in rheumatoid synovitis, with an augmented estrogen to androgen ratio in both sexes

  • Changes in the peripheral nervous system at the site of local inflammation are also hallmarks of synovitis in rheumatoid arthritis

  • Complex and changing interactions between the endocrine, nervous and immune systems occur during synovitis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuroendocrine pathways in synovitis.
Figure 2: Steroid hormone secretion and metabolism.
Figure 3: Immune–endocrine interactions in synovitis.

Similar content being viewed by others

References

  1. Tak PP (2006) Examination of the synovium and synovial fluid. In Rheumatoid arthritis, 229–241 (Eds Firestein GS et al.) Oxford: Oxford University Press

    Google Scholar 

  2. Straub RH and Cutolo M (2001) Involvement of the hypothalamic–pituitary–adrenal/gonadal axis and the peripheral nervous system in rheumatoid arthritis: viewpoint based on a systemic pathogenetic role. Arthritis Rheum 44: 493–507

    Article  CAS  Google Scholar 

  3. Hench PS et al. (1950) Effect of cortisone and pituitary adrenocorticotropic hormone (ACTH) on rheumatic diseases. J Am Med Assoc 40: 1327–1335

    Article  Google Scholar 

  4. Bland JH and Eddy WM (1968) Hemiplegia and rheumatoid hemiarthritis. Arthritis Rheum 11: 72–80

    Article  CAS  Google Scholar 

  5. Levine JD et al. (1984) Intraneuronal substance P contributes to the severity of experimental arthritis. Science 226: 547–549

    Article  CAS  Google Scholar 

  6. Besedovsky HO and Del Rey A (1996) Immune-neuro-endocrine interactions. Endocr Rev 17: 64–102

    Article  CAS  Google Scholar 

  7. Ader R (2007) Psychoneuroimmunology. San Diego: Academic Press

    Google Scholar 

  8. Bijlsma JW et al. (2002) Neuroendocrine immune mechanisms in rheumatic diseases. Trends Immunol 23: 59–61

    Article  CAS  Google Scholar 

  9. Schmidt M et al. (2005) Androgen conversion in osteoarthritis and rheumatoid arthritis synoviocytes—androstenedione and testosterone inhibit estrogen formation and favor production of more potent 5alpha-reduced androgens. Arthritis Res Ther 7: R938–R948

    Article  CAS  Google Scholar 

  10. Miller LE et al. (2000) The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J 14: 2097–2107

    Article  CAS  Google Scholar 

  11. Labrie F (1991) Intracrinology. Mol Cell Endocrinol 78: 113–118

    Article  Google Scholar 

  12. Labrie F et al. (2000) Intracrinology: role of the family of 17 beta-hydroxysteroid dehydrogenases in human physiology and disease. J Mol Endocrinol 25: 1–16

    Article  CAS  Google Scholar 

  13. Martel C et al. (1992) Distribution of 17 beta-hydroxysteroid dehydrogenase gene expression and activity in rat and human tissues. J Steroid Biochem Mol Biol 41: 597–603

    Article  CAS  Google Scholar 

  14. Cutolo M et al. (1992) Evidence for the presence of androgen receptors in the synovial tissue of rheumatoid arthritis patients and healthy controls. Arthritis Rheum 35: 1007–1015

    Article  CAS  Google Scholar 

  15. Cutolo M et al. (1993) Presence of estrogen-binding sites on macrophage-like synoviocytes and CD8+, CD29+, CD45RO+ T lymphocytes in normal and rheumatoid synovium. Arthritis Rheum 36: 1087–1097

    Article  CAS  Google Scholar 

  16. Cutolo M et al. (1998) Androgen and estrogen receptors are present in primary cultures of human synovial macrophages. J Clin Endocrinol Metab 81: 820–827

    Google Scholar 

  17. Simard J and Gingras S (2001) Crucial role of cytokines in sex steroid formation in normal and tumoral tissues. Mol Cell Endocrinol 171: 25–40

    Article  CAS  Google Scholar 

  18. Honma S et al. (2002) The influence of inflammatory cytokines on estrogen production and cell proliferation in human breast cancer cells. Endocr J 49: 371–377

    Article  CAS  Google Scholar 

  19. Le Bail J et al. (2001) Aromatase in synovial cells from postmenopausal women. Steroids 66: 749–757

    Article  CAS  Google Scholar 

  20. Macdiarmid F et al. (1994) Stimulation of aromatase activity in breast fibroblasts by tumor necrosis factor alpha. Mol Cell Endocrinol 106: 17–21

    Article  CAS  Google Scholar 

  21. Castagnetta LA et al. (2003) Increased estrogen formation and estrogen to androgen ratio in the synovial fluid of patients with rheumatoid arthritis. J Rheumatol 30: 2597–2605

    CAS  PubMed  Google Scholar 

  22. Cutolo M et al. (2004) Synovial fluid estrogens in rheumatoid arthritis. Autoimmun Rev 3: 193–198

    Article  CAS  Google Scholar 

  23. Cutolo M et al. (2003) New roles for estrogens in rheumatoid arthritis. Clin Exp Rheumatol 21: 687–690

    CAS  PubMed  Google Scholar 

  24. Capellino S et al. (2007) Quantitative determination of steroid hormone receptor positive cells in the synovium of patients with rheumatoid arthritis and osteoarthritis: is there a link to inflammation? Ann Rheum Dis 66: 53–58

    Article  CAS  Google Scholar 

  25. Eijsbouts AM et al. (2005) Hypothalamic-pituitary-adrenal axis activity in patients with rheumatoid arthritis. Clin Exp Rheumatol 23: 658–664

    CAS  PubMed  Google Scholar 

  26. Schmidt M et al. (2005) Reduced capacity for the reactivation of glucocorticoids in rheumatoid arthritis synovial cells: possible role of the sympathetic nervous system? Arthritis Rheum 52: 1711–1720

    Article  CAS  Google Scholar 

  27. Harbuz MS et al. (2002) Hypothalamo-pituitary-adrenal axis and chronic immune activation. Ann N Y Acad Sci 992: 99–106

    Article  Google Scholar 

  28. van Rossum EF and Lamberts SW (2006) Glucocorticoid resistance syndrome: A diagnostic and therapeutic approach. Best Pract Res Clin Endocrinol Metab 20: 6–26

    Article  Google Scholar 

  29. Cutolo M et al. (2006) Serum cytokines and steroidal hormones in polymyalgia rheumatica and elderly-onset rheumatoid arthritis. Ann Rheum Dis 65: 1438–1443

    Article  CAS  Google Scholar 

  30. Straub RH et al. (1998) Association of humoral markers of inflammation and dehydroepiandrosterone sulfate or cortisol serum levels in patients with chronic inflammatory bowel disease. Am J Gastroenterol 98: 2197–2202

    Article  Google Scholar 

  31. Maestroni GJ et al. (2002) Melatonin in rheumatoid arthritis: synovial macrophages show melatonin receptors. Ann N Y Acad Sci 966: 271–275

    Article  CAS  Google Scholar 

  32. Maestroni GJ et al. (2002) Melatonin in rheumatoid arthritis: a disease-promoting and modulating hormone? Clin Exp Rheumatol 20: 872–873

    CAS  PubMed  Google Scholar 

  33. Cutolo M et al. (2005) Nocturnal hormones and clinical rhythms in rheumatoid arthritis. Ann N Y Acad Sci 1051: 372–381

    Article  CAS  Google Scholar 

  34. Doria A et al. (2006) Th2 immune deviation induced by pregnancy: the two faces of autoimmune rheumatic diseases. Reprod Toxicol 22: 234–241

    Article  CAS  Google Scholar 

  35. Druckmann R and Druckmann MA (2005) Progesterone and the immunology of pregnancy. J Steroid Biochem Mol Biol 97: 389–396

    Article  CAS  Google Scholar 

  36. Szekeres-Bartho J et al. (2001) Progesterone as an immunomodulatory molecule. Int Immunopharmacol 1: 1037–1048

    Article  CAS  Google Scholar 

  37. Rovensky J et al. (2005) Hormone concentrations in synovial fluid of patients with rheumatoid arthritis. Clin Exp Rheumatol 23: 292–296

    CAS  PubMed  Google Scholar 

  38. Härle P et al. (2005) An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. Arthritis Rheum 2: 1305–1313

    Article  Google Scholar 

  39. Levine JD et al. (1998) Beta 2-adrenergic mechanisms in experimental arthritis. Proc Natl Acad Sci USA 85: 4553–4556

    Article  Google Scholar 

  40. Dhabhar FS and McEwen BS (2001) Bidirectional effects of stress and glucocorticoid hormones on immune function: possible explanations for paradoxical observations. In Psychoneuroimmunology, 301–338 (Eds Ader R et al.) San Diego: Academic Press

    Google Scholar 

  41. Straub RH et al. (2000) Neurotransmitters of the sympathetic nerve terminal are powerful chemoattractants for monocytes. J Leukoc Biol 67: 553–558

    Article  CAS  Google Scholar 

  42. Kohm AP and Sanders VM (2000) Norepinephrine: a messenger from the brain to the immune system. Immunology Today 21: 539–542

    Article  CAS  Google Scholar 

  43. Elenkov IJ et al. (2000) The sympathetic nervous system—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52: 595–638

    CAS  PubMed  Google Scholar 

  44. Miller LE et al. (2004) Increased prevalence of semaphorin 3C, a repellent of sympathetic nerve fibers, in the synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum 50: 1156–1163

    Article  CAS  Google Scholar 

  45. Baerwald CG et al. (1997) Impaired sympathetic influence on the immune response in patients with rheumatoid arthritis due to lymphocyte subset-specific modulation of beta 2-adrenergic receptors. Br J Rheumatol 36: 1262–1269

    Article  CAS  Google Scholar 

  46. Heijnen CJ et al. (1996) Functional alpha 1-adrenergic receptors on leukocytes of patients with polyarticular juvenile rheumatoid arthritis. J Neuroimmunol 71: 223–226

    Article  CAS  Google Scholar 

  47. Miller LE et al. (2002) Norepinephrine from synovial tyrosine hydroxylase positive cells is a strong indicator of synovial inflammation in rheumatoid arthritis. J Rheumatol 29: 427–435

    CAS  PubMed  Google Scholar 

  48. Bijlsma JW et al. (2006) Neuroendocrine immune system involvement in rheumatology. Ann N Y Acad Sci 1069: xviii–xxiv

    Article  Google Scholar 

  49. Bijlsma JWJ et al. (2005) Clinical aspects of immune neuroendocrine mechanisms in rheumatic diseases. Rheum Dis Clin North Am 31: xiii–xvi

    Article  Google Scholar 

  50. Forslind K et al.; the BARFOT Study Group (2007) Sex: a major predictor of remission in early rheumatoid arthritis? Ann Rheum Dis 66: 46–52

    Article  CAS  Google Scholar 

  51. Kvien TK et al. (2006) Epidemiological aspects of rheumatoid arthritis: the sex ratio. Ann N Y Acad Sci 1069: 212–222

    Article  Google Scholar 

  52. Cutolo M et al. (2006) Anti-TNF and sex hormones. Ann N Y Acad Sci 1069: 391–400

    Article  CAS  Google Scholar 

  53. Straub RH et al. (2006) Tumor necrosis factor-neutralizing therapies improve altered hormone axes: an alternative mode of antiinflammatory action. Arthritis Rheum 54: 2039–2046

    Article  CAS  Google Scholar 

  54. Tengstrand B et al. (2003) Abnormal levels of serum dehydroepiandrosterone, estrone, and estradiol in men with rheumatoid arthritis: high correlation between serum estradiol and current degree of inflammation. J Rheumatol 30: 2338–2343

    CAS  PubMed  Google Scholar 

  55. Straub RH et al. (2005) Sex hormone concentrations in patients with rheumatoid arthritis are not normalized during 12 weeks of anti-tumor necrosis factor therapy. J Rheumatol 32: 1253–1258

    CAS  PubMed  Google Scholar 

  56. Komi J et al. (2001) Non-steroidal anti-oestrogens inhibit the differentiation of synovial macrophages into dendritic cells. Rheumatology (Oxford) 40: 185–191

    Article  CAS  Google Scholar 

  57. Cutolo M et al. (1997) Testosterone metabolism and cyclosporin A treatment in rheumatoid arthritis. Br J Rheumatol 36: 433–439

    Article  CAS  Google Scholar 

  58. Taneja V et al. (2007) New humanized HLA-DR4-transgenic mice that mimic the sex bias of rheumatoid arthritis. Arthritis Rheum 56: 69–78

    Article  Google Scholar 

  59. Straub RH et al. (2002) Anti-inflammatory cooperativity of corticosteroids and norepinephrine in rheumatoid arthritis synovial tissue in vivo and in vitro. FASEB J 16: 993–1005

    Article  CAS  Google Scholar 

  60. Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6: 318–328

    Article  CAS  Google Scholar 

  61. Cutolo M and Straub RH (2006) Stress as a risk factor in the pathogenesis of rheumatoid arthritis. Neuroimmunomodulation 13: 277–282

    Article  CAS  Google Scholar 

  62. Straub RH and Cutolo M (2007) Circadian rhythms in rheumatoid arthritis: Implications for pathophysiology and therapeutic management. Arthritis Rheum 56: 399–408

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Cutolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutolo, M., Straub, R. & Bijlsma, J. Neuroendocrine–immune interactions in synovitis. Nat Rev Rheumatol 3, 627–634 (2007). https://doi.org/10.1038/ncprheum0601

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0601

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing