Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of Wnt proteins in arthritis

Abstract

Wnt proteins regulate organ development, tumorigenesis and bone homeostasis, among other functions. The binding of Wnt proteins to plasma membrane receptors on mesenchymal cells induces the differentiation of these cells into the osteoblast lineage and thereby supports bone formation. Wnts are also key signaling proteins in joint remodeling processes. Active Wnt signaling contributes to osteophyte formation and might have an essential role in the anabolic pattern of joint remodeling that is observed in ankylosing spondylitis and osteoarthritis. By contrast, blockade of Wnt signaling facilitates bone erosion and contributes to catabolic joint remodeling, a process that is observed in rheumatoid arthritis. This Review summarizes current knowledge of the molecular regulation of joint remodeling associated with chronic arthritis, focusing on the role of the Wnt proteins and their inhibitors. It also addresses the role of Wnt in determining the differences in clinical presentation of inflammatory arthropathies and discusses implications for future therapy.

Key Points

  • The balance of Wnt proteins and their antagonists is vital in osteoblast differentiation and bone formation

  • Arthritis leads to joint remodeling with either a decrease in local bone mass as observed in rheumatoid arthritis or an increase in local bone mass as observed in ankylosing spondylitis

  • Wnt proteins are crucial in driving osteophytic responses in arthritis, and their antagonists, such as DKK proteins, actively suppress osteophyte formation

  • Activity of Wnt signaling pathways is a key determinant of the pattern of structural remodeling in arthritis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The canonical Wnt signaling pathway.
Figure 2: Wnt and joint remodeling.

Similar content being viewed by others

References

  1. Schett G et al. (2007) Tumor necrosis factor blockers and structural remodeling in ankylosing spondylitis: what is reality and what is fiction? Ann Rheum Dis 66: 709–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lories RJ et al. (2005) Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest 115: 1571–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scharstuhl A et al. (2003) Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor beta/bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum 48: 3442–3451

    Article  CAS  PubMed  Google Scholar 

  4. McInnes IB and Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7: 429–442

    Article  CAS  PubMed  Google Scholar 

  5. Takayanagi H (2007) Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 7: 292–304

    Article  CAS  PubMed  Google Scholar 

  6. Gravallese EM et al. (1998) Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 152: 943–951

    CAS  PubMed  PubMed Central  Google Scholar 

  7. van Gijn ME et al. (2002) The wnt-frizzled cascade in cardiovascular disease. Cardiovasc Res 55: 16–24

    Article  CAS  PubMed  Google Scholar 

  8. Shimizu H et al. (1997) Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ 8: 1349–1358

    CAS  PubMed  Google Scholar 

  9. Smalley MJ and Dale TC (1999) Wnt signalling in mammalian development and cancer. Cancer Metastasis Rev 18: 215–230

    Article  CAS  PubMed  Google Scholar 

  10. Cadigan KM and Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11: 3286–3305

    Article  CAS  PubMed  Google Scholar 

  11. Storm EE and Kingsley DM (1996) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122: 3969–3979

    CAS  PubMed  Google Scholar 

  12. Hartmann C and Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104: 341–351

    Article  CAS  PubMed  Google Scholar 

  13. Pacifici M et al. (2006) Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann NY Acad Sci 1068: 74–86

    Article  CAS  PubMed  Google Scholar 

  14. Koyama E et al. (2007) Synovial joint formation during mouse limb skeletogenesis: roles of Indian hedgehog signaling. Ann NY Acad Sci 1116: 100–112

    Article  CAS  PubMed  Google Scholar 

  15. Guo X et al. (2004) Wnt/β-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev 18: 2404–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Settle SH Jr et al. (2003) Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 254: 116–130

    Article  CAS  PubMed  Google Scholar 

  17. Niedermaier M et al. (2005) An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression. J Clin Invest 115: 900–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Später D et al. (2006) Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis. Development 133: 3039–3049

    Article  PubMed  Google Scholar 

  19. Lane NE et al. (2007) Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum 56: 3319–3325

    Article  CAS  PubMed  Google Scholar 

  20. Min JL et al. (2005) Association of the Frizzled-related protein gene with symptomatic osteoarthritis at multiple sites. Arthritis Rheum 52: 1077–1080

    Article  CAS  PubMed  Google Scholar 

  21. Loughlin J et al. (2004) Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci USA 101: 9757–9762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lamb R et al. (2005) Wnt-1-inducible signaling pathway protein 3 and susceptibility to juvenile idiopathic arthritis. Arthritis Rheum 52: 3548–3553

    Article  CAS  PubMed  Google Scholar 

  23. Urano T et al. (2007) Association of a single nucleotide polymorphism in the WISP1 gene with spinal osteoarthritis in postmenopausal Japanese women. J Bone Miner Metab 25: 253–258

    Article  CAS  PubMed  Google Scholar 

  24. Kerkhof JM et al. (2008) Radiographic osteoarthritis at three joint sites and FRZB, LRP5, and LRP6 polymorphisms in two population-based cohorts. Osteoarthritis Cartilage [10.1016/j.joca.2008.02.007]

  25. Diarra D et al. (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13: 156–163

    Article  CAS  PubMed  Google Scholar 

  26. Sen M et al. (2000) Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proc Natl Acad Sci USA 97: 2791–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheon H et al. (2004) Wnt1 inducible signaling pathway protein-3 regulation and microsatellite structure in arthritis. J Rheumatol 31: 2106–2114

    CAS  PubMed  Google Scholar 

  28. Velasquillo C et al. (2007) Expression of MIG-6, WNT-9A, and WNT-7B during osteoarthritis. Ann NY Acad Sci 1117: 175–180

    Article  CAS  PubMed  Google Scholar 

  29. Imai K et al. (2006) Differential expression of WNTs and FRPs in the synovium of rheumatoid arthritis and osteoarthritis. Biochem Biophys Res Commun 345: 1615–1620

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura Y et al. (2005) Expression profiles and functional analyses of Wnt-related genes in human joint disorders. Am J Pathol 167: 97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sen M et al. (2001) Blockade of Wnt-5A/Frizzled 5 signaling inhibits rheumatoid synoviocyte activation. Arthritis Rheum 44: 772–781

    Article  CAS  PubMed  Google Scholar 

  32. Sen M et al. (2002) Regulation of fibronectin and metalloproteinase expression by Wnt signaling in rheumatoid arthritis synoviocytes. Arthritis Rheum 46: 2867–2877

    Article  CAS  PubMed  Google Scholar 

  33. Goldring SR and Goldring MB (2007) Eating bone or adding it: the Wnt pathway decides. Nat Med 13: 133–134

    Article  CAS  PubMed  Google Scholar 

  34. Glass DA et al. (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8: 751–764

    Article  CAS  PubMed  Google Scholar 

  35. Lories R et al. (2007) Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum 56: 4095–4103

    Article  CAS  PubMed  Google Scholar 

  36. Tian E et al. (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349: 2483–2494

    Article  CAS  PubMed  Google Scholar 

  37. Benjamin M and McGonagle D (2001) The anatomical basis for disease localisation in seronegative spondylarthropathy at entheses and related sites. J Anat 199: 503–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ball J (1971) Enthesopathy of rheumatoid and ankylosing spondylitis. Ann Rheum Dis 30: 213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. François RJ et al. (2001) Entheses and enthesitis: a histopathologic review and relevance to spondyloarthritides. Curr Opin Rheumatol 13: 255–264

    Article  PubMed  Google Scholar 

  40. Appel H et al. (2006) Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum 54: 2845–2851

    Article  PubMed  Google Scholar 

  41. Dong Y et al. (2005) Wnt-mediated regulation of chondrocyte maturation: modulation by TGF-β. J Cell Biochem 95: 1057–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yano F et al. (2005) The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner. Biochem Biophys Res Commun 333: 1300–1308

    Article  CAS  PubMed  Google Scholar 

  43. Hwang SG et al. (2005) Wnt-3a regulates chondrocyte differentiation via c-Jun/AP-1 pathway. FEBS Lett 579: 4837–4842

    Article  CAS  PubMed  Google Scholar 

  44. Chen M et al. (2008) Inhibition of β-catenin signaling causes defects in postnatal cartilage development. J Cell Sci 121: 1455–1465

    Article  CAS  PubMed  Google Scholar 

  45. Yuasa T et al. (2008) Wnt/β-catenin signaling stimulates matrix catabolic genes and activity in articular chondrocytes: its possible role in joint degeneration. Lab Invest 88: 264–274

    Article  CAS  PubMed  Google Scholar 

  46. Tamamura Y et al. (2005) Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem 280: 19185–19195

    Article  CAS  PubMed  Google Scholar 

  47. Enomoto-Iwamoto M et al. (2002) The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol 251: 142–156

    Article  CAS  PubMed  Google Scholar 

  48. Kakar S et al. (2007) Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res 22: 1903–1912

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y et al. (2007) Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med 4: e249

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dell'accio F et al. (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 58: 1410–1421

    Article  CAS  PubMed  Google Scholar 

  51. Hwang SG et al. (2004) Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms. J Biol Chem 279: 26597–26604

    Article  CAS  PubMed  Google Scholar 

  52. Dong YF et al. (2006) Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol 208: 77–86

    Article  CAS  PubMed  Google Scholar 

  53. van der Heijde DM et al. (2006) Two-year etanercept therapy does not inhibit radiographic progression in patients with ankylosing spondylitis. Ann Rheum Dis 65 (Suppl II): 81

    Google Scholar 

  54. Lories RJ et al. (2007) Evidence for uncoupling of inflammation and joint remodeling in a mouse model of spondylarthritis. Arthritis Rheum 56: 489–497

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Schett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schett, G., Zwerina, J. & David, JP. The role of Wnt proteins in arthritis. Nat Rev Rheumatol 4, 473–480 (2008). https://doi.org/10.1038/ncprheum0881

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing