Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic and nongenomic effects of glucocorticoids

Abstract

The strong anti-inflammatory and immunosuppressive effects of glucocorticoids are mediated primarily by the cytosolic glucocorticoid receptors. These receptors are members of the steroid hormone receptor family, a superfamily of ligand-inducible transcription factors, and exert genomic effects that can result in increased expression of regulatory—including anti-inflammatory—proteins (transactivation), or decreased production of proinflammatory proteins (transrepression). Transactivation is thought to be responsible for numerous adverse effects of glucocorticoids; transrepression is thought to be responsible for many of the clinically desirable anti-inflammatory and immunosuppressive effects of glucocorticoids. Optimized glucocorticoids, such as selective glucocorticoid receptor agonists, are being developed to try to minimize the adverse effects many patients experience. Glucocorticoids also exert their effects via rapid, nongenomic mechanisms that can be classified as involving nonspecific interactions of glucocorticoids with cellular membranes, nongenomic effects that are mediated by cytosolic glucocorticoid receptors, or specific interactions with membrane-bound glucocorticoid receptors. Increased understanding of these mechanisms of glucocorticoid action could enable the development of novel drugs with which to treat patients with inflammatory and autoimmune disease.

Key Points

  • Glucocorticoids are powerful and cost-effective drugs for the treatment of various rheumatic diseases

  • Several adverse effects limit the successful therapeutic use of glucocorticoids, especially if used at high doses for long periods of time

  • The strong anti-inflammatory and immunosuppressive effects are mediated by genomic and nongenomic mechanisms of action

  • A greater understanding of the detailed mechanisms of glucocorticoid action is required to improve the benefit:risk ratio of glucocorticoid therapy

  • Current intensive research focuses on the optimization of conventional glucocorticoid use (for drugs that are already available) and on the development of novel glucocorticoid receptor ligands

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: One gene encodes different receptor variants.
Figure 2: Genomic effects of glucocorticoids include transactivation and transrepression.

Similar content being viewed by others

References

  1. Buttgereit F et al. (2005) Optimised glucocorticoid therapy: the sharpening of an old spear. Lancet 365: 801–803

    Article  CAS  Google Scholar 

  2. Thiele K et al. (2005) Current use of glucocorticoids in patients with rheumatoid arthritis in Germany. Arthritis Rheum 53: 740–747

    Article  CAS  Google Scholar 

  3. Buttgereit F et al. (2004) Glucocorticoids in the treatment of rheumatic diseases: an update on the mechanisms of action. Arthritis Rheum 50: 3408–3417

    Article  CAS  Google Scholar 

  4. Bijlsma JW et al. (2006) Are glucocorticoids DMARDs? Ann NY Acad Sci 1069: 268–274

    Article  CAS  Google Scholar 

  5. Stahn C et al. (2007) Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol Cell Endocrinol 275: 71–78

    Article  CAS  Google Scholar 

  6. Buttgereit F et al. (2005) The molecular basis for the effectiveness, toxicity, and resistance to glucocorticoids: focus on the treatment of rheumatoid arthritis. Scand J Rheumatol 34: 14–21

    Article  CAS  Google Scholar 

  7. Buttgereit F et al. (2008) Chapter 87: Glucocorticoids. In Clinical Immunology: principles and practice, edn 3 (Eds Rich R. et al.) Philadelphia: Mosby Elsevier

    Google Scholar 

  8. Schacke H et al. (2004) Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci USA 101: 227–232

    Article  Google Scholar 

  9. Da Silva JA et al. (2006) Safety of low dose glucocorticoid treatment in rheumatoid arthritis: published evidence and prospective trial data. Ann Rheum Dis 65: 285–293

    Article  CAS  Google Scholar 

  10. van Staa TP et al. (2000) Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology (Oxford) 39: 1383–1389

    Article  CAS  Google Scholar 

  11. Da Silva JA et al. (2006) Revisiting the toxicity of low-dose glucocorticoids: risks and fears. Ann NY Acad Sci 1069: 275–288

    Article  CAS  Google Scholar 

  12. Buttgereit F et al. (2002) Standardised nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens: current questions and tentative answers in rheumatology. Ann Rheum Dis 61: 718–722

    Article  CAS  Google Scholar 

  13. Hoes JN et al. (2007) EULAR evidence-based recommendations on the management of systemic glucocorticoid therapy in rheumatic diseases. Ann Rheum Dis 66: 1560–1567

    Article  CAS  Google Scholar 

  14. Buttgereit F and Burmester GR (2008) Glucocorticoids. In Primer on Rheumatic Diseases, edn 13, 644–650 (Eds Klippel JH. et al.) Berlin, Germany: Springer

    Chapter  Google Scholar 

  15. Bijlsma JW et al. (2007) Systemic and intra-articular glucocorticoids in rheumatoid arthritis. In Rheumatoid arthritis, edn 2, 337–353 (Eds Firestein G. et al.) New York: Oxford University Press

    Google Scholar 

  16. Schacke H et al. (2002) Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther 96: 23–43

    Article  CAS  Google Scholar 

  17. Adcock IM and Lane SJ (2003) Corticosteroid-insensitive asthma: molecular mechanisms. J Endocrinol 178: 347–355

    Article  CAS  Google Scholar 

  18. Wikstrom AC (2003) Glucocorticoid action and novel mechanisms of steroid resistance: role of glucocorticoid receptor-interacting proteins for glucocorticoid responsiveness. J Endocrinol 178: 331–337

    Article  Google Scholar 

  19. Almawi WY and Melemedjian OK (2002) Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J Leukoc Biol 71: 9–15

    CAS  PubMed  Google Scholar 

  20. Buttgereit F and Scheffold A (2002) Rapid glucocorticoid effects on immune cells. Steroids 67: 529–534

    Article  CAS  Google Scholar 

  21. Pratt WB (1998) The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med 217: 420–434

    Article  CAS  Google Scholar 

  22. Lowenberg M et al. (2008) Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands. Steroids 73: 1025–1029

    Article  Google Scholar 

  23. Hollenberg SM et al. (1985) Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318: 635–641

    Article  CAS  Google Scholar 

  24. Lu NZ and Cidlowski JA (2004) The origin and functions of multiple human glucocorticoid receptor isoforms. Ann NY Acad Sci 1024: 102–123

    Article  CAS  Google Scholar 

  25. Chikanza IC (2002) Mechanisms of corticosteroid resistance in rheumatoid arthritis: a putative role for the corticosteroid receptor beta isoform. Ann NY Acad Sci 966: 39–48

    Article  CAS  Google Scholar 

  26. Oakley RH et al. (1999) The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J Biol Chem 274: 27857–27866

    Article  CAS  Google Scholar 

  27. Bodwell JE et al. (1991) Identification of phosphorylated sites in the mouse glucocorticoid receptor. J Biol Chem 266: 7549–7555

    CAS  PubMed  Google Scholar 

  28. Webster JC et al. (1997) Mouse glucocorticoid receptor phosphorylation status influences multiple functions of the receptor protein. J Biol Chem 272: 9287–9293

    Article  CAS  Google Scholar 

  29. McEwan IJ et al. (1993) Direct interaction of the tau 1 transactivation domain of the human glucocorticoid receptor with the basal transcriptional machinery. Mol Cell Biol 13: 399–407

    Article  CAS  Google Scholar 

  30. Dahlman-Wright K et al. (1995) Structural characterization of a minimal functional transactivation domain from the human glucocorticoid receptor. Proc Natl Acad Sci USA 92: 1699–1703

    Article  CAS  Google Scholar 

  31. MacGregor JI and Jordan VC (1998) Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev 50: 151–196

    CAS  PubMed  Google Scholar 

  32. Beato M and Klug J (2000) Steroid hormone receptors: an update. Hum Reprod Update 6: 225–236

    Article  CAS  Google Scholar 

  33. Pratt WB et al. (2006) Chaperoning of glucocorticoid receptors. Handb Exp Pharmacol 172: 111–138

    Article  CAS  Google Scholar 

  34. Robertson NM et al. (1993) Demonstration of nuclear translocation of the mineralocorticoid receptor (MR) using an anti-MR antibody and confocal laser scanning microscopy. Mol Endocrinol 7: 1226–1239

    CAS  PubMed  Google Scholar 

  35. Ishaq M et al. (2007) Zap70 signaling pathway mediates glucocorticoid receptor-dependent transcriptional activation: role in the regulation of annexin 1 expression in T cells. J Immunol 179: 3851–3858

    Article  CAS  Google Scholar 

  36. Sakai DD et al. (1988) Hormone-mediated repression: a negative glucocorticoid response element from the bovine prolactin gene. Genes Dev 2: 1144–1154

    Article  CAS  Google Scholar 

  37. Song IH et al. (2005) New glucocorticoids on the horizon: repress, don't activate! J Rheumatol 32: 1199–1207

    CAS  PubMed  Google Scholar 

  38. De Bosscher K et al. (2000) Glucocorticoids repress NF-κB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc Natl Acad Sci USA 97: 3919–3924

    Article  CAS  Google Scholar 

  39. Nissen RM and Yamamoto KR (2000) The glucocorticoid receptor inhibits NFκB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 14: 2314–2329

    Article  CAS  Google Scholar 

  40. Falkenstein E et al. (2000) Mannheim classification of nongenomically initiated (rapid) steroid action(s). J Clin Endocrinol Metab 85: 2072–2075

    Article  CAS  Google Scholar 

  41. Schacke H et al. (2006) Insight into the molecular mechanisms of glucocorticoid receptor action promotes identification of novel ligands with an improved therapeutic index. Exp Dermatol 15: 565–573

    Article  Google Scholar 

  42. Haller J et al. (2008) The effects of non-genomic glucocorticoid mechanisms on bodily functions and the central neural system. A critical evaluation of findings. Front Neuroendocrinol 29: 273–291

    Article  CAS  Google Scholar 

  43. Croxtall JD et al. (2000) Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-independent mechanism. Br J Pharmacol 130: 289–298

    Article  CAS  Google Scholar 

  44. Cato AC et al. (2002) Rapid actions of steroid receptors in cellular signaling pathways. Sci STKE 2002: RE9

    PubMed  Google Scholar 

  45. Hafezi-Moghadam A et al. (2002) Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 8: 473–479

    Article  CAS  Google Scholar 

  46. Buttgereit F et al. (2000) Bioenergetics of immune functions: fundamental and therapeutic aspects. Immunol Today 21: 192–199

    Article  CAS  Google Scholar 

  47. Nadal A et al. (2001) The plasma membrane estrogen receptor: nuclear or unclear? Trends Pharmacol Sci 22: 597–599

    Article  CAS  Google Scholar 

  48. Gametchu B et al. (1999) Plasma membrane-resident glucocorticoid receptors in rodent lymphoma and human leukemia models. Steroids 64: 107–119

    Article  CAS  Google Scholar 

  49. Orchinik M et al. (1991) A corticosteroid receptor in neuronal membranes. Science 252: 1848–1851

    Article  CAS  Google Scholar 

  50. Bartholome B et al. (2004) Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and up-regulated after in vitro stimulation and in patients with rheumatoid arthritis. FASEB J 18: 70–80

    Article  CAS  Google Scholar 

  51. Song IH and Buttgereit F (2006) Non-genomic glucocorticoid effects to provide the basis for new drug developments. Mol Cell Endocrinol 246: 142–146

    Article  CAS  Google Scholar 

  52. Tryc AB et al. (2006) Membrane glucocorticoid receptor expression on peripheral blood mononuclear cells in patients with ankylosing spondylitis. J Rheumatol 33: 2249–2253

    PubMed  Google Scholar 

  53. Spies CM et al. (2006) Membrane glucocorticoid receptors are down regulated by glucocorticoids in patients with systemic lupus erythematosus and use a caveolin-1-independent expression pathway. Ann Rheum Dis 65: 1139–1146

    Article  CAS  Google Scholar 

  54. Löwenberg M et al. (2005) Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood 106: 1703–1710

    Article  Google Scholar 

  55. Löwenberg M et al. (2006) Glucocorticoids cause rapid dissociation of a T-cell-receptor-associated protein complex containing LCK and FYN. EMBO Rep 7: 1023–1029

    Article  Google Scholar 

  56. Schmidt J et al. (2003) Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 126: 1895–1904

    Article  Google Scholar 

  57. Metselaar JM et al. (2003) Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum 48: 2059–2066

    Article  CAS  Google Scholar 

  58. Perretti M et al. (2003) Generation of innovative anti-inflammatory and anti-arthritic glucocorticoid derivatives that release NO: the nitro-steroids. Dig Liver Dis 35 (Suppl 2): S41–S48

    Article  CAS  Google Scholar 

  59. Paul-Clark MJ et al. (2002) Potent antiarthritic properties of a glucocorticoid derivative, NCX-1015, in an experimental model of arthritis. Proc Natl Acad Sci USA 99: 1677–1682

    Article  CAS  Google Scholar 

  60. Paul-Clark MJ et al. (2003) Glucocorticoid receptor nitration leads to enhanced anti-inflammatory effects of novel steroid ligands. J Immunol 171: 3245–3252

    Article  CAS  Google Scholar 

  61. Buttgereit F et al. (2008) Efficacy of modified-release versus standard prednisone to reduce duration of morning stiffness of the joints in rheumatoid arthritis (CAPRA-1): a double-blind, randomised controlled trial. Lancet 371: 205–214

    Article  CAS  Google Scholar 

  62. Schacke H et al. (2007) Selective glucocorticoid receptor agonists (SEGRAs): novel ligands with an improved therapeutic index. Mol Cell Endocrinol 275: 109–117

    Article  Google Scholar 

  63. Lin CW et al. (2002) Trans-activation and repression properties of the novel nonsteroid glucocorticoid receptor ligand 2,5-dihydro-9-hydroxy-10-methoxy-2,2,4-trimethyl-5-(1-methylcyclohexen-3-y1) -1H-[1]benzopyrano[3,4-f]quinoline (A276575) and its four stereoisomers. Mol Pharmacol 62: 297–303

    Article  CAS  Google Scholar 

  64. Miner JN et al. (2007) Anti-inflammatory glucocorticoid receptor ligand with reduced side effects exhibits an altered protein-protein interaction profile. Proc Natl Acad Sci USA 104: 19244–19249

    Article  CAS  Google Scholar 

  65. Lopez FJ et al. (2008) LGD5552, an anti-inflammatory glucocorticoid receptor ligand with reduced side effects, in vivo. Endocrinology 149: 2080–2089

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Buttgereit.

Ethics declarations

Competing interests

F Buttgereit has declared that he has been a consultant for, and received speakers bureau and grant/research support from, Merck Pharma GmbH and NiTech Pharma GmbH. F Buttgereit has also been a consultant for Organon. C Stahn declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stahn, C., Buttgereit, F. Genomic and nongenomic effects of glucocorticoids. Nat Rev Rheumatol 4, 525–533 (2008). https://doi.org/10.1038/ncprheum0898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing