Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Wnt–β-catenin signaling in the pathogenesis of osteoarthritis

Abstract

Osteoarthritis (OA) is a progressively degenerative joint condition that is influenced by various metabolic and structural factors. The canonical Wnt–frizzled–β-catenin pathway has been implicated in the pathogenesis of OA. Products of the Wnt, frizzled, secreted frizzled-related protein (sFRP), Dickkopf and LDL-receptor-related protein gene families have crucial roles in the development and maintenance of bone, cartilage and joints. Increased levels of β-catenin have been observed in degenerative cartilage, suggesting that a diminished capacity to limit Wnt signaling might contribute to cartilage loss. Polymorphisms in genes involved in Wnt signaling—particularly in the gene encoding sFRP-3—are associated with an increased susceptibility to the development of OA. At least one of these polymorphisms in the gene encoding sFPR-3 is associated with a reduced ability to limit β-catenin signaling. In addition, the canonical Wnt signaling pathway is influenced by local factors, including alterations in glycosaminoglycan sulfation, cartilage matrix content, transforming growth factor β and vitamin D. A higher circulating level of the Wnt inhibitor Dickkopf-1, for instance, is associated with slowed progression of hip OA. Hence, the sum of local and systemic factors contributes to the outcome of the Wnt–frizzled pathways. Further investigation is needed to fully define the role of Wnt signaling in OA.

Key Points

  • Wnt–frizzled–β-catenin signaling influences skeletal development and homeostasis of adult bone mass

  • Single nucleotide polymorphisms in LRP5 and FRZB have been associated with OA in population studies

  • Wnt and FRZB gene expression are increased in cartilage in response to mechanical trauma

  • An increase in β-catenin expression is seen in degenerated cartilage

  • Elevated circulating levels of the Wnt antagonist Dickkopf-1 seem to be associated with reduced progression of radiographic hip OA in elderly women

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The canonical Wnt signaling pathway and its inhibitors.

Similar content being viewed by others

References

  1. Felson DT et al. (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133: 635–646

    Article  CAS  Google Scholar 

  2. Hunter DJ and Felson DT (2006) Osteoarthritis. BMJ 332: 639–642

    Article  Google Scholar 

  3. Radin EL et al. (1972) Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet 1: 519–522

    Article  CAS  Google Scholar 

  4. Jones G et al. (2002) A cross sectional study of the association between sex, smoking, and other lifestyle factors and osteoarthritis of the hand. J Rheumatol 29: 1719–1724

    PubMed  Google Scholar 

  5. Hart DJ et al. (1999) Incidence and risk factors for radiographic knee osteoarthritis in middle-aged women: the Chingford Study. Arthritis Rheum 42: 17–24

    Article  CAS  Google Scholar 

  6. Hart DJ and Spector TD (1993) Cigarette smoking and risk of osteoarthritis in women in the general population: the Chingford study. Ann Rheum Dis 52: 93–96

    Article  CAS  Google Scholar 

  7. Arden NK et al. (1999) Osteoarthritis and risk of falls, rates of bone loss, and osteoporotic fractures. Study of Osteoporotic Fractures Research Group. Arthritis Rheum 42: 1378–1385

    Article  CAS  Google Scholar 

  8. Sowers M et al. (1999) The associations of bone mineral density and bone turnover markers with osteoarthritis of the hand and knee in pre- and perimenopausal women. Arthritis Rheum 42: 483–489

    Article  CAS  Google Scholar 

  9. Hannan MT et al. (1993) Bone mineral density and knee osteoarthritis in elderly men and women. The Framingham Study. Arthritis Rheum 36: 1671–1680

    Article  CAS  Google Scholar 

  10. Hart DJ et al. (1994) The relationship between osteoarthritis and osteoporosis in the general population: the Chingford Study. Ann Rheum Dis 53: 158–162

    Article  CAS  Google Scholar 

  11. Burger H et al. (1996) Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. The Rotterdam Study. Arthritis Rheum 39: 81–86

    Article  CAS  Google Scholar 

  12. Fries JF et al. (1994) Running and the development of disability with age. Ann Intern Med 121: 502–509

    Article  CAS  Google Scholar 

  13. Hochberg MC et al. (1995) The association of radiographic changes of osteoarthritis of the hand and hip in elderly women. J Rheumatol 22: 2291–2294

    CAS  PubMed  Google Scholar 

  14. Hartmann C and Tabin CJ (2001) Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104: 341–351

    Article  CAS  Google Scholar 

  15. Guo X et al. (2004) Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev 18: 2404–2417

    Article  CAS  Google Scholar 

  16. Hartmann C and Tabin CJ (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127: 3141–3159

    CAS  PubMed  Google Scholar 

  17. Boyden LM et al. (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346: 1513–1521

    Article  CAS  Google Scholar 

  18. Li W et al. (2002) Identification and structure of the anti-sigma factor-binding domain of the disulphide-stress regulated sigma factor sigma(R) from Streptomyces coelicolor. J Mol Biol 323: 225–236

    Article  CAS  Google Scholar 

  19. Gong Y et al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107: 513–523

    Article  CAS  Google Scholar 

  20. Zakany J and Duboule D (1993) Correlation of expression of Wnt-1 in developing limbs with abnormalities in growth and skeletal patterning. Nature 362: 546–549

    Article  CAS  Google Scholar 

  21. Rudnicki JA and Brown AM (1997) Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev Biol 185: 104–118

    Article  CAS  Google Scholar 

  22. Kawakami Y et al. (1999) Involvement of Wnt-5a in chondrogenic pattern formation in the chick limb bud. Dev Growth Differ 41: 29–40

    Article  CAS  Google Scholar 

  23. Yamaguchi TP et al. (1999) Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126: 1211–1223

    CAS  PubMed  Google Scholar 

  24. Topol L et al. (2003) Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 162: 899–908

    Article  CAS  Google Scholar 

  25. Daumer KM et al. (2004) Long-term in vitro analysis of limb cartilage development: involvement of Wnt signaling. J Cell Biochem 93: 526–541

    Article  CAS  Google Scholar 

  26. Hwang SG et al. (2004) Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms. J Biol Chem 279: 26597–26604

    Article  CAS  Google Scholar 

  27. Dell'accio F et al. (2008) Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum 58: 1410–1421

    Article  CAS  Google Scholar 

  28. Bhanot P et al. (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382: 225–230

    Article  CAS  Google Scholar 

  29. Yang-Snyder J et al. (1996) A frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr Biol 6: 1302–1306

    Article  CAS  Google Scholar 

  30. Shtutman M et al. (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96: 5522–5527

    Article  CAS  Google Scholar 

  31. He TC et al. (1998) Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512

    Article  CAS  Google Scholar 

  32. Wielenga VJ et al. (1999) Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 154: 515–523

    Article  CAS  Google Scholar 

  33. Li L et al. (1999) Dishevelled proteins lead to two signaling pathways. Regulation of LEF-1 and c-Jun N-terminal kinase in mammalian cells. J Biol Chem 274: 129–134

    Article  CAS  Google Scholar 

  34. Torres MA et al. (1996) Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5a class and by a dominant negative cadherin in early Xenopus development. J Cell Biol 133: 1123–1137

    Article  CAS  Google Scholar 

  35. Kühl M et al. (2001) Antagonistic regulation of convergent extension movements in Xenopus by Wnt/beta-catenin and Wnt/Ca2+ signaling. Mech Dev 106: 61–76

    Article  Google Scholar 

  36. Rubinfeld B et al. (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272: 1023–1026

    Article  CAS  Google Scholar 

  37. Yost C et al. (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10: 1443–1454

    Article  CAS  Google Scholar 

  38. Behrens J et al. (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382: 638–642

    Article  CAS  Google Scholar 

  39. Glinka A et al. (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391: 357–362

    Article  CAS  Google Scholar 

  40. Hsieh JC et al. (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398: 431–436

    Article  CAS  Google Scholar 

  41. Piccolo S et al. (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397: 707–710

    Article  CAS  Google Scholar 

  42. Semenov M et al. (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280: 26770–26775

    Article  CAS  Google Scholar 

  43. Semënov MV et al. (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11: 951–961

    Article  Google Scholar 

  44. Lin K et al. (1997) The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling. Proc Natl Acad Sci USA 94: 11196–11200

    Article  CAS  Google Scholar 

  45. Uren A et al. (2000) Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J Biol Chem 275: 4374–4382

    Article  CAS  Google Scholar 

  46. Van Wesenbeeck L et al. (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72: 763–771

    Article  CAS  Google Scholar 

  47. Little RD et al. (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70: 11–19

    Article  CAS  Google Scholar 

  48. Chapman K et al. (1999) Osteoarthritis-susceptibility locus on chromosome 11q, detected by linkage. Am J Hum Genet 65: 167–174

    Article  CAS  Google Scholar 

  49. Chapman K et al. (2002) Finer linkage mapping of primary hip osteoarthritis susceptibility on chromosome 11q in a cohort of affected female sibling pairs. Arthritis Rheum 46: 1780–1783

    Article  CAS  Google Scholar 

  50. Urano T et al. (2007) Q89R polymorphism in the LDL receptor-related protein 5 gene is associated with spinal osteoarthritis in postmenopausal Japanese women. Spine 32: 25–29

    Article  Google Scholar 

  51. Smith AJ et al. (2005) Haplotypes of the low-density lipoprotein receptor-related protein 5 (LRP5) gene: are they a risk factor in osteoarthritis? Osteoarthritis Cartilage 13: 608–613

    Article  CAS  Google Scholar 

  52. Loughlin J et al. (2004) Functional variants within the secreted frizzled-related protein 3 gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci USA 101: 9757–9762

    Article  CAS  Google Scholar 

  53. Lane NE et al. (2006) Frizzled-related protein variants are risk factors for hip osteoarthritis. Arthritis Rheum 54: 1246–1254

    Article  CAS  Google Scholar 

  54. Min JL et al. (2005) Association of the frizzled-related protein gene with symptomatic osteoarthritis at multiple sites. Arthritis Rheum 52: 1077–1080

    Article  CAS  Google Scholar 

  55. Valdes AM et al. (2007) Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum 56: 137–146

    Article  CAS  Google Scholar 

  56. Hopwood B et al. (2007) Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-beta/bone morphogenic protein signalling. Arthritis Res Ther 9: R100

    Article  Google Scholar 

  57. Sen M et al. (2000) Expression and function of wingless and frizzled homologs in rheumatoid arthritis. Proc Natl Acad Sci USA 97: 2791–2796

    Article  CAS  Google Scholar 

  58. Imai K et al. (2006) Differential expression of WNTs and FRPs in the synovium of rheumatoid arthritis and osteoarthritis. Biochem Biophys Res Commun 345: 1615–1620

    Article  CAS  Google Scholar 

  59. Ijiri K et al. (2002) Differential expression patterns of secreted frizzled related protein genes in synovial cells from patients with arthritis. J Rheumatol 29: 2266–2270

    CAS  PubMed  Google Scholar 

  60. Kim SJ et al. (2002) Beta-catenin regulates expression of cyclooxygenase-2 in articular chondrocytes. Biochem Biophys Res Commun 296: 221–226

    Article  CAS  Google Scholar 

  61. Hwang SG et al. (2005) Regulation of beta-catenin signaling and maintenance of chondrocyte differentiation by ubiquitin-independent proteasomal degradation of alpha-catenin. J Biol Chem 280: 12758–12765

    Article  CAS  Google Scholar 

  62. Day TF et al. (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8: 739–750

    Article  CAS  Google Scholar 

  63. Tamamura Y et al. (2005) Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem 280: 19185–19195

    Article  CAS  Google Scholar 

  64. Shortkroff S and Yates KE (2007) Alteration of matrix glycosaminoglycans diminishes articular chondrocytes' response to a canonical Wnt signal. Osteoarthritis Cartilage 15: 147–154

    Article  CAS  Google Scholar 

  65. Dell'accio F et al. (2006) Activation of WNT and BMP signaling in adult human articular cartilage following mechanical injury. Arthritis Res Ther 8: R139

    Article  Google Scholar 

  66. Lories RJ et al. (2007) Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum 56: 4095–4103

    Article  CAS  Google Scholar 

  67. Ryu JH et al. (2002) Regulation of the chondrocyte phenotype by beta-catenin. Development 129: 5541–5550

    Article  CAS  Google Scholar 

  68. Yano F et al. (2005) The canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner. Biochem Biophys Res Commun 333: 1300–1308

    Article  CAS  Google Scholar 

  69. Zhou S et al. (2004) Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res 19: 463–470

    Article  CAS  Google Scholar 

  70. Dao DY et al. (2007) Axin1 and Axin2 are regulated by TGF-β and mediate cross-talk between TGF-β and Wnt signaling pathways. Ann NY Acad Sci 1116: 82–99

    Article  CAS  Google Scholar 

  71. Chen Y et al. (2007) Beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem 282: 526–533

    Article  CAS  Google Scholar 

  72. Palmer HG et al. (2001) Vitamin D3 promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 154: 369–387

    Article  CAS  Google Scholar 

  73. Fretz JA et al. (2007) 1,25-Dihydroxyvitamin D3 induces expression of the Wnt signaling co-regulator LRP5 via regulatory elements located significantly downstream of the gene's transcriptional start site. J Steroid Biochem Mol Biol 103: 440–445

    Article  CAS  Google Scholar 

  74. Chong et al. (2002) Disulfide bond assignments of secreted Frizzled-related protein-1 provide insights about Frizzled homology and netrin molecules. J Biol Chem 277: 5134–5144

    Article  CAS  Google Scholar 

  75. Hausler KD et al. (2004) Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J Bone Miner Res 19: 1873–1881

    Article  CAS  Google Scholar 

  76. Diarra D et al. (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13: 156–163

    Article  CAS  Google Scholar 

  77. Oshima T et al. (2005) Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 106: 3160–3165

    Article  CAS  Google Scholar 

  78. Tian E et al. (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349: 2483–2494

    Article  CAS  Google Scholar 

  79. Lane NE et al. (2007) Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum 56: 3319–3325

    Article  CAS  Google Scholar 

  80. Wang S et al. (1997) Frzb-1, an antagonist of Wnt-1 and Wnt-8, does not block signaling by Wnts -3A, -5A, or -11. Biochem Biophys Res Commun 236: 502–504

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the NIH (5U01AR50901-02).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corr, M. Wnt–β-catenin signaling in the pathogenesis of osteoarthritis. Nat Rev Rheumatol 4, 550–556 (2008). https://doi.org/10.1038/ncprheum0904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing