Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes

Abstract

A major obstacle to creating precisely expressed transgenes lies in the epigenetic effects of the host chromatin that surrounds them. Here we present a strategy to overcome this problem, employing a Gal4-inducible luciferase assay to systematically quantify position effects of host chromatin and the ability of insulators to counteract these effects at phiC31 integration loci randomly distributed throughout the Drosophila genome. We identify loci that can be exploited to deliver precise doses of transgene expression to specific tissues. Moreover, we uncover a previously unrecognized property of the gypsy retrovirus insulator to boost gene expression to levels severalfold greater than at most or possibly all un-insulated loci, in every tissue tested. These findings provide the first opportunity to create a battery of transgenes that can be reliably expressed at high levels in virtually any tissue by integration at a single locus, and conversely, to engineer a controlled phenotypic allelic series by exploiting several loci. The generality of our approach makes it adaptable to other model systems to identify and modify loci for optimal transgene expression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The UAS::luciferase reporter before and after integration at attP docking sites.
Figure 2: Levels of basal and inducible expression at attP landing sites are uncorrelated.
Figure 3: Position effects are tissue dependent.
Figure 4: Exploiting position effects to create an allelic series.
Figure 5: The gypsy insulator increases Gal4-inducible gene expression in larval and adult tissues.
Figure 6: The gypsy insulator increases expression of an endogenous salivary gland enhancer in the HSP70 promoter.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Anderson, K.V. & Ingham, P.W. The transformation of the model organism: a decade of developmental genetics. Nat. Genet. 33 (Suppl.), 285–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Stathopoulos, A. & Levine, M. Genomic regulatory networks and animal development. Dev. Cell 9, 449–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Lewis, E.B. The phenomenon of position effect. Adv. Genet. 3, 73–115 (1950).

    Article  CAS  PubMed  Google Scholar 

  4. Spradling, A.C. & Rubin, G.M. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell 34, 47–57 (1983).

    Article  CAS  PubMed  Google Scholar 

  5. Levis, R., Hazelrigg, T. & Rubin, G.M. Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229, 558–561 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Pirrotta, V., Steller, H. & Bozzetti, M.P. Multiple upstream regulatory elements control the expression of the Drosophila white gene. EMBO J. 4, 3501–3508 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palmiter, R.D. & Brinster, R.L. Germ-line transformation of mice. Annu. Rev. Genet. 20, 465–499 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hogan, B., Beddington, R., Costantini, F. & Lacey, E. Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1995).

    Google Scholar 

  9. Rubin, G.M. & Spradling, A.C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Gaszner, M. & Felsenfeld, G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nat. Rev. Genet. 7, 703–713 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Chung, J.H., Whiteley, M. & Felsenfeld, G. A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74, 505–514 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Potts, W., Tucker, D., Wood, H. & Martin, C. Chicken beta-globin 5′ HS4 insulators function to reduce variability in transgenic founder mice. Biochem. Biophys. Res. Commun. 273, 1015–1018 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Allen, B.G. & Weeks, D.L. Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat. Methods 2, 975–979 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kellum, R. & Schedl, P. A position-effect assay for boundaries of higher order chromosomal domains. Cell 64, 941–950 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Roseman, R.R., Pirrotta, V. & Geyer, P.K. The su(Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects. EMBO J. 12, 435–442 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giraldo, P., Rival-Gervier, S., Houdebine, L.M. & Montoliu, L. The potential benefits of insulators on heterologous constructs in transgenic animals. Transgenic Res. 12, 751–755 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Qianqian, Z. & Halfon, M.S. Vector-dependent gene expression driven by insulated P element reporter vectors. Fly 1, 55–56 (2007).

    Article  Google Scholar 

  18. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  Google Scholar 

  19. Yu, J. & McMahon, A.P. Reproducible and inducible knockdown of gene expression in mice. Genesis 44, 252–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Rong, Y.S. & Golic, K.G. Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Groth, A.C. & Calos, M.P. Phage integrases: biology and applications. J. Mol. Biol. 335, 667–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bateman, J.R., Lee, A.M. & Wu, C.T. Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173, 769–777 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Venken, K.J., He, Y., Hoskins, R.A. & Bellen, H.J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  27. Arnone, M.I., Dmochowski, I.J. & Gache, C. Using reporter genes to study cis-regulatory elements. Methods Cell Biol. 74, 621–652 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Struhl, K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat. Struct. Mol. Biol. 14, 103–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Presente, A., Shaw, S., Nye, J.S. & Andres, A.J. Transgene-mediated RNA interference defines a novel role for notch in chemosensory startle behavior. Genesis 34, 165–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Kuhn, E.J., Viering, M.M., Rhodes, K.M. & Geyer, P.K. A test of insulator interactions in Drosophila. EMBO J. 22, 2463–2471 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smith, P.A. & Corces, V.G. The suppressor of Hairy-wing protein regulates the tissue-specific expression of the Drosophila gypsy retrotransposon. Genetics 139, 215–228 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gerlitz, O., Nellen, D., Ottiger, M. & Basler, K. A screen for genes expressed in Drosophila imaginal discs. Int. J. Dev. Biol. 46, 173–176 (2002).

    CAS  PubMed  Google Scholar 

  33. Markstein, M., Markstein, P., Markstein, V. & Levine, M.S. Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 99, 763–768 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Markstein, M. et al. A regulatory code for neurogenic gene expression in the Drosophila embryo. Development 131, 2387–2394 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Small, S., Blair, A. & Levine, M. Regulation of even-skipped stripe 2 in the Drosophila embryo. EMBO J. 11, 4047–4057 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reeves, N. & Posakony, J.W. Genetic programs activated by proneural proteins in the developing Drosophila PNS. Dev. Cell 8, 413–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. H., Ledford. Fly library boosts gene tool supply. Nature 448, 115 (2007).

    Article  Google Scholar 

  39. Dickins, R.A. et al. Tissue-specific and reversible RNA interference in transgenic mice. Nat. Genet. 39, 914–921 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chintapalli, V.R., Wang, J. & Dow, J.A. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet. 39, 715–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Robertson, H.M. et al. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118, 461–470 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liao, G.C., Rehm, E.J. & Rubin, G.M. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97, 3347–3351 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Thummel, C.S. & Pirrotta, V. New pCaSpeR P-element vectors. Drosoph. Inf. Serv. 71, 150 (1992).

    Google Scholar 

  44. Geyer, P.K. & Corces, V.G. DNA position-specific repression of transcription by a Drosophila zinc finger protein. Genes Dev. 6, 1865–1873 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Gloor, G.B. et al. Type I repressors of P element mobility. Genetics 135, 81–95 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ranganayakulu, G., Schulz, R.A. & Olson, E.N. Wingless signaling induces nautilus expression in the ventral mesoderm of the Drosophila embryo. Dev. Biol. 176, 143–148 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Sun, B., Xu, P. & Salvaterra, P.M. Dynamic visualization of nervous system in live Drosophila. Proc. Natl. Acad. Sci. USA 96, 10438–10443 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Fietz, M.J., Jacinto, A., Taylor, A.M., Alexandre, C. & Ingham, P.W. Secretion of the amino-terminal fragment of the hedgehog protein is necessary and sufficient for hedgehog signalling in Drosophila. Curr. Biol. 5, 643–650 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Sullivan, W., Ashburner, M. & Hawley, R.S. Drosophila protocols (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2000).

    Google Scholar 

Download references

Acknowledgements

We are indebted to S. Cherry for calling our attention to the phiC31 integrase system and providing critical feedback throughout the project. We also thank J. Zallen, B. Mathey-Prevot, M. Gelbart-Carey, E. Larschan, M. Levine, L. Quilter and K. Venken for helpful comments on the manuscript, and J. Philips, M. Gibson, R. Binari, J. Bateman, M. Kuroda, A. Gortchakov, A. Alekseyenko, W. Bender, M. Wolfner, S. Elledge, A. McMahon, S. Dymecki and N. Hunter for stimulating discussions. We are grateful to M. Calos, R. Nusse and M. Fish (Stanford University) for attP fly stocks, B. Fisher for attP mapping data, J. Bai (Harvard Medical School) for pUAST-luciferase, R. Lehmann (New York University Medical Center), J. Posakony (University of California San Diego), N. Dostatni (Institut Curie), G. Struhl (Columbia University), D. Arnosti (Michigan State University) and the Bloomington Stock Center for fly stocks, and FlyBase for the BLAST server. N.P. is an investigator of the Howard Hughes Medical Institute; M.M. is a fellow of the Jane Coffin Childs Memorial Fund; C.P. is a European Molecular Biology Organization (EMBO) fellow and S.E.C. receives support from the US Department of Energy contract DE-AC0376SF0098.

Author information

Authors and Affiliations

Authors

Contributions

M.M. and N.P. conceived the project; M.M. and C.P. conducted and interpreted the experiments; C.V. conducted embryonic injections; S.E.C. contributed the attP mapping data; M.M. wrote the manuscript; and N.P. supervised the project.

Corresponding author

Correspondence to Michele Markstein.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1 and 2, Supplementary Figures 1–3, Supplementary Data (PDF 927 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markstein, M., Pitsouli, C., Villalta, C. et al. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40, 476–483 (2008). https://doi.org/10.1038/ng.101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing