Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy

Abstract

Limb-girdle muscular dystrophy type 1D (LGMD1D) was linked to chromosome 7q36 over a decade ago1, but its genetic cause has remained elusive. Here we studied nine LGMD-affected families from Finland, the United States and Italy and identified four dominant missense mutations leading to p.Phe93Leu or p.Phe89Ile changes in the ubiquitously expressed co-chaperone DNAJB6. Functional testing in vivo showed that the mutations have a dominant toxic effect mediated specifically by the cytoplasmic isoform of DNAJB6. In vitro studies demonstrated that the mutations increase the half-life of DNAJB6, extending this effect to the wild-type protein, and reduce its protective anti-aggregation effect. Further, we show that DNAJB6 interacts with members of the CASA complex, including the myofibrillar myopathy–causing protein BAG3. Our data identify the genetic cause of LGMD1D, suggest that its pathogenesis is mediated by defective chaperone function and highlight how mutations in a ubiquitously expressed gene can exert effects in a tissue-, isoform- and cellular compartment–specific manner.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microscopy of muscle biopsies from Finnish individuals with LGMD1D.
Figure 2: Muscle disintegration in DNAJB6b mutant and morphant zebrafish.
Figure 3: Dominant effect of mutant DNAJB6 proteins.
Figure 4: Impaired anti-aggregation activity of mutant DNAJB6b.
Figure 5: Association of DNAJB6 with the CASA complex.

Similar content being viewed by others

References

  1. Speer, M.C. et al. Identification of a new autosomal dominant limb-girdle muscular dystrophy locus on chromosome 7. Am. J. Hum. Genet. 64, 556–562 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gordon, E., Pegoraro, E. & Hoffman, E.P. Limb-girdle muscular dystrophy overview. GeneReviews (eds. Pagon, R.A., Bird, T.D., Dolan, C.R. & Stephens, K.) (University of Washington, Seattle, 2000). 〈http://www.ncbi.nlm.nih.gov/books/NBK1408〉/.

  3. Sandell, S. et al. The enigma of 7q36 linked autosomal dominant limb girdle muscular dystrophy. J. Neurol. Neurosurg. Psychiatry 81, 834–839 (2010).

    Article  PubMed  Google Scholar 

  4. Hackman, P. et al. Four new Finnish families with LGMD1D; refinement of the clinical phenotype and the linked 7q36 locus. Neuromuscul. Disord. 21, 338–344 (2011).

    Article  PubMed  Google Scholar 

  5. Speer, M.C. et al. Evidence for locus heterogeneity in autosomal dominant limb-girdle muscular dystrophy. Am. J. Hum. Genet. 57, 1371–1376 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kampinga, H.H. & Craig, E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11, 579–592 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hageman, J. et al. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol. Cell 37, 355–369 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Chuang, J.Z. et al. Characterization of a brain-enriched chaperone, MRJ, that inhibits Huntingtin aggregation and toxicity independently. J. Biol. Chem. 277, 19831–19838 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Izawa, I. et al. Identification of Mrj, a DnaJ/Hsp40 family protein, as a keratin 8/18 filament regulatory protein. J. Biol. Chem. 275, 34521–34527 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Dai, Y.S., Xu, J. & Molkentin, J.D. The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Mol. Cell. Biol. 25, 9936–9948 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perales-Calvo, J., Muga, A. & Moro, F. Role of DnaJ G/F-rich domain in conformational recognition and binding of protein substrates. J. Biol. Chem. 285, 34231–34239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cajo, G.C. et al. The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle. J. Biol. Chem. 281, 12436–12444 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Wall, D., Zylicz, M. & Georgopoulos, C. The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J. Biol. Chem. 270, 2139–2144 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Yan, W. & Craig, E.A. The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sis1. Mol. Cell. Biol. 19, 7751–7758 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanai, R. & Mashima, K. Characterization of two isoforms of a human DnaJ homologue, HSJ2. Mol. Biol. Rep. 30, 149–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Mitra, A. et al. Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer. Breast Cancer Res. 10, R22 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Durrenberger, P.F. et al. DnaJB6 is present in the core of Lewy bodies and is highly up-regulated in parkinsonian astrocytes. J. Neurosci. Res. 87, 238–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Watson, E.D., Geary-Joo, C., Hughes, M. & Cross, J.C. The Mrj co-chaperone mediates keratin turnover and prevents the formation of toxic inclusion bodies in trophoblast cells of the placenta. Development 134, 1809–1817 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Rose, J.M., Novoselov, S.S., Robinson, P.A. & Cheetham, M.E. Molecular chaperone-mediated rescue of mitophagy by a Parkin RING1 domain mutant. Hum. Mol. Genet. 20, 16–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y. et al. The Hsp40 family chaperone protein DnaJB6 enhances Schlafen1 nuclear localization which is critical for promotion of cell-cycle arrest in T-cells. Biochem. J. 413, 239–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Li, Z.F. et al. Non-pathogenic protein aggregates in skeletal muscle in MLF1 transgenic mice. J. Neurol. Sci. 264, 77–86 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Seki, N. et al. Cloning, tissue expression, and chromosomal assignment of human MRJ gene for a member of the DNAJ protein family. J. Hum. Genet. 44, 185–189 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Selcen, D. & Engel, A.G. Mutations in myotilin cause myofibrillar myopathy. Neurology 62, 1363–1371 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Ding, W.X. et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am. J. Pathol. 171, 513–524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pandey, U.B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 860–864 (2007).

    Article  Google Scholar 

  27. Zhu, K., Dunner, K. Jr. & McConkey, D.J. Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29, 451–462 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Hageman, J., van Waarde-Verhagen, M., Zylicz, A., Walerych, D. & Kampinga, H.H. The diverse members of the mammalian HSP70 machine show distinct chaperone-like activities. Biochem. J. 435, 127–142 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Arndt, V. et al. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol. 20, 143–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Kettern, N., Dreiseidler, M., Tawo, R. & Höhfeld, J. Chaperone-assisted degradation: multiple paths to destruction. Biol. Chem. 391, 481–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Selcen, D. et al. Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann. Neurol. 65, 83–89 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ianzano, L. et al. Loss of function of the cytoplasmic isoform of the protein laforin (EPM2A) causes Lafora progressive myoclonus epilepsy. Hum. Mutat. 23, 170–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mologni, L., Moza, M., Lalowski, M.M. & Carpén, O. Characterization of mouse myotilin and its promoter. Biochem. Biophys. Res. Commun. 329, 1001–1009 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Hasholt, L. et al. Antisense downregulation of mutant huntingtin in a cell model. J. Gene Med. 5, 528–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Qian, S.B., McDonough, H., Boellmann, F., Cyr, D.M. & Patterson, C. CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440, 551–555 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sarparanta, J. et al. Interactions with M-band titin and calpain 3 link myospryn (CMYA5) to tibial and limb-girdle muscular dystrophies. J. Biol. Chem. 285, 30304–30315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) 3rd edn., Chapter 1 (University of Oregon Press, Oregon, 1995).

Download references

Acknowledgements

This study was supported by the Folkhälsan Research Foundation (504; B.U.), the Academy of Finland (138491; B.U.), the Sigrid Jusélius Foundation (23816; B.U.), the Liv och Hälsa Foundation (LoH G017; B.U.), Helsinki Graduate School in Biotechnology and Molecular Biology (J.S.), the Alfred Kordelin Foundation (J.S.), the Don Carlo Gnocchi Onlus Foundation (RF 2007 convenzione 41; G.T., E.R.), the American Heart Association (AHA MAA spring 2011 #11POST7160006; C.G.), the Duke Perinatal and Neonatal Research Institute (N.K.), the National Institutes of Health (UL1 RR024128-01; N.K., M.H., and R01HD042601-10; C.G.) and the Muscular Dystrophy Association (MDA4090, MDA2010; M.H.). N.K. is supported by a Distinguished Brumley Professorship. We thank O. Carpén (Department of Pathology, University of Helsinki) for the myotilin antibody; A. Nørremølle (Faculty of Health Sciences, University of Copenhagen) for the pEGFP/HD-120Q construct; C. Patterson (School of Medicine, University of North Carolina) for the STUB1 construct; M. Sarparanta (Laboratory of Radiochemistry, University of Helsinki) for rat muscle tissue samples; and M. Soininen, M. Ritala and A. Evilä for technical assistance. Confocal microscopy was carried out with instruments of the Biomedicum Imaging Unit, University of Helsinki, and electron microscopy at the Department of Pathology, University of Helsinki.

Author information

Authors and Affiliations

Authors

Contributions

J.S., P.H.J., C.G., M.H., N.K. and B.U. wrote the paper, and all authors approved and commented on it. B.U., S.S., J.M.S., J.P., G.T., E.R. and I.M. recruited and evaluated patients. H.L., S.L., K.M., S.P. and P.H. performed the genetic analyses. M.S. and P.H. performed the transcript analysis. C.G., H.L., K.M. and J.S. made the plasmid constructs. C.G. performed the zebrafish studies and protein stability assays. O.R., S.H., A.V. and J.S. performed microscopy of patient muscle samples. S.H. performed electron microscopy. J.S., P.H.J. and H.L. performed the filter trap assay, oligomerization and CASA interaction studies.

Corresponding author

Correspondence to Bjarne Udd.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Tables and Figures

Supplementary Tables 1–2 and Supplementary Figures 1–9 (PDF 8570 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarparanta, J., Jonson, P., Golzio, C. et al. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet 44, 450–455 (2012). https://doi.org/10.1038/ng.1103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing