Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae

Abstract

SWI/SNF, an evolutionarily conserved ATP-dependent chromatin-remodeling complex, has an important role in transcriptional regulation1. In Saccharomyces cerevisiae, SWI/SNF regulates the expression of 6% of total genes through activation or repression2. Swi1, a subunit of SWI/SNF, contains an N-terminal region rich in glutamine and asparagine, a notable feature shared by all characterized yeast prions—a group of unique proteins capable of self-perpetuating changes in conformation and function3. Here we provide evidence that Swi1 can become a prion, [SWI+]. Swi1 aggregates in [SWI+] cells but not in nonprion cells. Cells bearing [SWI+] show a partial loss-of-function phenotype of SWI/SNF. [SWI+] can be eliminated by guanidine hydrochloride treatment, HSP104 deletion or loss of Swi1. Moreover, we show [SWI+] is dominantly and cytoplasmically transmitted. Our findings reveal a novel mechanism of 'protein-only' inheritance that results in modification of chromatin-remodeling and, ultimately, global gene regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overexpression of SWI1 but not SNF5 functions as Pin+.
Figure 2: Isolation and characterization of [SWI+] candidates.
Figure 3: [SWI+] can exist independently from [PSI+].
Figure 4: [SWI+] is dominantly and cytoplasmically inherited.
Figure 5: Swi1 but not Snf5 exists in distinct conformational states in [SWI+] and [swi] cells.
Figure 6: Swi1 is the protein determinant of [SWI+].

Similar content being viewed by others

References

  1. Martens, J.A. & Winston, F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr. Opin. Genet. Dev. 13, 136–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Sudarsanam, P., Iyer, V.R., Brown, P.O. & Winston, F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97, 3364–3369 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Tuite, M.F. & Cox, B.S. Propagation of yeast prions. Nat. Rev. Mol. Cell Biol. 4, 878–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Wickner, R.B. [URE3] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Cox, B. [PSI], a cytoplasmic suppressor of super-suppression in yeast. Heredity 20, 505–521 (1965).

    Article  Google Scholar 

  7. Lacroute, F. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 206, 519–522 (1971).

    Google Scholar 

  8. Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Derkatch, I.L., Bradley, M.E., Hong, J.Y. & Liebman, S.W. Prions affect the appearance of other prions: the story of [PIN+]. Cell 106, 171–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Uptain, S.M. & Lindquist, S. Prions as protein-based genetic elements. Annu. Rev. Microbiol. 56, 703–741 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Chernoff, Y.O., Derkach, I.L. & Inge-Vechtomov, S.G. Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr. Genet. 24, 268–270 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Masison, D.C. & Wickner, R.B. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270, 93–95 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Osherovich, L.Z. & Weissman, J.S. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell 106, 183–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Derkatch, I.L., Bradley, M.E., Zhou, P., Chernoff, Y.O. & Liebman, S.W. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147, 507–519 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Derkatch, I.L. et al. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI.] prion in yeast and aggregation of Sup35 in vitro. Proc. Natl. Acad. Sci. USA 101, 12934–12939 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Michelitsch, M.D. & Weissman, J.S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA 97, 11910–11915 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol. 7, 437–447 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Smith, C.L., Horowitz-Scherer, R., Flanagan, J.F., Woodcock, C.L. & Peterson, C.L. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat. Struct. Biol. 10, 141–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Neigeborn, L. & Carlson, M. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108, 845–858 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Guidi, C.J. et al. Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol. Cell. Biol. 21, 3598–3603 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roberts, C.W. & Orkin, S.H. The SWI/SNF complex–chromatin and cancer. Nat. Rev. Cancer 4, 133–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ross, E.D., Minton, A. & Wickner, R.B. Prion domains: sequences, structures and interactions. Nat. Cell Biol. 7, 1039–1044 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Tuite, M.F., Mundy, C.R. & Cox, B.S. Agents that cause a high frequency of genetic change from [PSI+] to [psi] in Saccharomyces cerevisiae. Genetics 98, 691–711 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Neigeborn, L. & Carlson, M. Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115, 247–253 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, L. & Lindquist, S. Creating a protein-based element of inheritance. Science 287, 661–664 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Parsell, D.A., Kowal, A.S., Singer, M.A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Conde, J. & Fink, G.R. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 73, 3651–3655 (1976).

    Article  CAS  PubMed  Google Scholar 

  28. Krobitsch, S., & Lindquist, S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA 97, 1589–1594 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Park, K.W., Hahn, J.S., Fan, Q., Thiele, D.J. & Li, L. De novo appearance and “strain” formation of yeast prion [PSI+] are regulated by the heat-shock transcription factor. Genetics 173, 35–47 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laurent, B.C., Treitel, M.A. & Carlson, M. The SNF5 protein of Saccharomyces cerevisiae is a glutamine- and proline-rich transcriptional activator that affects expression of a broad spectrum of genes. Mol. Cell. Biol. 10, 5616–5625 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Carlson (Department of Genetics and Development, Columbia University) for the gift of the pLS7 plasmid; B.C. Laurent (Department of Oncological Sciences, Mount Sinai School of Medicine) for the gift of the pLY14 plasmid; S. Lindquist (Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology and Howard Hughes Medical Institute) for the Hsp104 antibody; J. Workman for helpful discussions; E. Crow and G.E. Kim for technical assistance; R. Lawrence, C. Kowalczyk, R. Miller, T. Volpe, C. Long and E. Crow for critical comments and manuscript editing. This work was partially supported by grants from the United States Army (0850-370-R744), the Ellison Medical Foundation and the US National Institutes of Health (R01NS056086) to L.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3, Supplementary Figures 1–6 (PDF 304 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Z., Park, KW., Yu, H. et al. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat Genet 40, 460–465 (2008). https://doi.org/10.1038/ng.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing