Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation of functional insulin-producing cells in the gut by Foxo1 ablation

Abstract

Restoration of regulated insulin secretion is the ultimate goal of therapy for type 1 diabetes. Here, we show that, unexpectedly, somatic ablation of Foxo1 in Neurog3+ enteroendocrine progenitor cells gives rise to gut insulin-positive (Ins+) cells that express markers of mature β cells and secrete bioactive insulin as well as C-peptide in response to glucose and sulfonylureas. Lineage tracing experiments showed that gut Ins+ cells arise cell autonomously from Foxo1-deficient cells. Inducible Foxo1 ablation in adult mice also resulted in the generation of gut Ins+ cells. Following ablation by the β-cell toxin streptozotocin, gut Ins+ cells regenerate and produce insulin, reversing hyperglycemia in mice. The data indicate that Neurog3+ enteroendocrine progenitors require active Foxo1 to prevent differentiation into Ins+ cells. Foxo1 ablation in gut epithelium may provide an approach to restore insulin production in type 1 diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Foxo1 ablation in enteroendocrine progenitors expands the pool of Neurog3+ cells.
Figure 2: Gut insulin-producing cells in NKO mice.
Figure 3: Insulin secretion and bioactivity.
Figure 4: Regeneration of gut Ins+ cells following STZ-mediated ablation.
Figure 5: Marker analysis of gut Ins+ cells.
Figure 6: Lineage tracing of Ins+ cells and Aes expression.

Similar content being viewed by others

References

  1. Zhou, Q. & Melton, D.A. Pathways to new β cells. Cold Spring Harb. Symp. Quant. Biol. 73, 175–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Bonal, C. & Herrera, P.L. Genes controlling pancreas ontogeny. Int. J. Dev. Biol. 52, 823–835 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA 97, 1607–1611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nat. Genet. 24, 36–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Schwitzgebel, V.M. et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127, 3533–3542 (2000).

    CAS  PubMed  Google Scholar 

  7. Lee, C.S., Perreault, N., Brestelli, J.E. & Kaestner, K.H. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev. 16, 1488–1497 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schonhoff, S.E., Giel-Moloney, M. & Leiter, A.B. Neurogenin 3–expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Dev. Biol. 270, 443–454 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Schonhoff, S.E., Giel-Moloney, M. & Leiter, A.B. Minireview: development and differentiation of gut endocrine cells. Endocrinology 145, 2639–2644 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Gu, G., Dubauskaite, J. & Melton, D.A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002).

    CAS  PubMed  Google Scholar 

  11. Xu, X. et al. β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Hunt, R.K. & Jacobson, M. Specification of positional information in retinal ganglion cells of Xenopus: stability of the specified state. Proc. Natl. Acad. Sci. USA 69, 2860–2864 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Accili, D. & Arden, K.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Hribal, M.L., Nakae, J., Kitamura, T., Shutter, J.R. & Accili, D. Regulation of insulin-like growth factor–dependent myoblast differentiation by Foxo forkhead transcription factors. J. Cell Biol. 162, 535–541 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakae, J. et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell 4, 119–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Paik, J.H. et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5, 540–553 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kitamura, T. et al. A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J. Clin. Invest. 117, 2477–2485 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kitamura, T. et al. Regulation of pancreatic juxtaductal endocrine cell formation by FoxO1. Mol. Cell. Biol. 29, 4417–4430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kitamura, T. et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. J. Clin. Invest. 110, 1839–1847 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okamoto, H. et al. Role of the forkhead protein FoxO1 in β cell compensation to insulin resistance. J. Clin. Invest. 116, 775–782 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kawamori, D. et al. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem. 281, 1091–1098 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Kitamura, Y.I. et al. FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metab. 2, 153–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Al-Masri, M. et al. Effect of forkhead box O1 (FOXO1) on β cell development in the human fetal pancreas. Diabetologia 53, 699–711 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, J.C. et al. Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes 50, 928–936 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Fukuda, A. et al. Ectopic pancreas formation in Hes1-knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J. Clin. Invest. 116, 1484–1493 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kageyama, R., Ohtsuka, T. & Tomita, K. The bHLH gene Hes1 regulates differentiation of multiple cell types. Mol. Cells 10, 1–7 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. van der Flier, L.G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Hingorani, S.R. et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4, 437–450 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Fujita, Y. et al. Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet α-cells and promotes insulin secretion. Gastroenterology 138, 1966–1975 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, S. et al. Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc. Natl. Acad. Sci. USA 106, 9715–9720 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tuttle, R.L. et al. Regulation of pancreatic (-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat. Med. 7, 1133–1137 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Nielsen, K. et al. β-cell maturation leads to in vitro sensitivity to cytotoxins. Diabetes 48, 2324–2332 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Sommer, L., Ma, Q. & Anderson, D.J. neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci. 8, 221–241 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Gershengorn, M.C. et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306, 2261–2264 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Naya, F.J. et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 11, 2323–2334 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao, N., White, P. & Kaestner, K.H. Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev. Cell 16, 588–599 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakamura, T., Tsuchiya, K. & Watanabe, M. Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J. Gastroenterol. 42, 705–710 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Essers, M.A. et al. Functional interaction between β-catenin and FOXO in oxidative stress signaling. Science 308, 1181–1184 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Sewalt, R.G., Gunster, M.J., van der Vlag, J., Satijn, D.P. & Otte, A.P. C-terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol. Cell. Biol. 19, 777–787 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoffman, B.G., Zavaglia, B., Beach, M. & Helgason, C.D. Expression of Groucho/TLE proteins during pancreas development. BMC Dev. Biol. 8, 81 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Muhr, J., Andersson, E., Persson, M., Jessell, T.M. & Ericson, J. Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube. Cell 104, 861–873 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Sonoshita, M. et al. Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell 19, 125–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Cheung, A.T. et al. Glucose-dependent insulin release from genetically engineered K cells. Science 290, 1959–1962 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Nielsen, L.B. et al. Co-localisation of the Kir6.2/SUR1 channel complex with glucagon-like peptide–1 and glucose-dependent insulinotrophic polypeptide expression in human ileal cells and implications for glycaemic control in new onset type 1 diabetes. Eur. J. Endocrinol. 156, 663–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. D'Amour, K.A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Mundell, N.A. & Labosky, P.A. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates. Development 138, 641–652 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Uhlenhaut, N.H. et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130–1142 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Bjerknes, M. & Cheng, H. Neurogenin 3 and the enteroendocrine cell lineage in the adult mouse small intestinal epithelium. Dev. Biol. 300, 722–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Drucker, D.J. The biology of incretin hormones. Cell Metab. 3, 153–165 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Paik, J.H. et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128, 309–323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Okamoto, H. et al. Transgenic rescue of insulin receptor–deficient mice. J. Clin. Invest. 114, 214–223 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sherman, B.M., Gorden, P., Roth, J. & Freychet, P. Circulating insulin: the proinsulin-like properties of “big” insulin in patients without islet cell tumors. J. Clin. Invest. 50, 849–858 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Golaz, J.L., Vonlaufen, N., Hemphill, A. & Burgener, I.A. Establishment and characterization of a primary canine duodenal epithelial cell culture. In Vitro Cell. Dev. Biol. Anim. 43, 176–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Gao, N. et al. Foxa2 controls vesicle docking and insulin secretion in mature β cells. Cell Metab. 6, 267–279 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki, A., Nakauchi, H. & Taniguchi, H. Glucagon-like peptide 1 (1–37) converts intestinal epithelial cells into insulin-producing cells. Proc. Natl. Acad. Sci. USA 100, 5034–5039 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Efstratiadis (Biomedical Research Foundation, Academy of Athens, Athens, Greece) for Ins2-Gfp knock-in mice and A. Leiter (University of Massachusetts) for Neurog3-Cre mice. We thank L.S., J.Y.K.-M. and T.M. for advice and reagents and Q.X. for technical support. We also thank members of the Accili laboratory for insightful discussion and critical reading of the manuscript. This work was supported by grants from the US National Institutes of Health (DK58282 and DK64819), the Columbia University Diabetes Research Center (DK63608), the Druckenmiller Fellowship of the New York Stem Cell Foundation, the Brehm Coalition and the Russell Berrie Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.T. generated mice, designed and performed experiments and wrote the manuscript. S.X. generated mice and designed experiments. T.K. generated mice and performed immunohistochemistry. R.A.D. and D.A. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Domenico Accili.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 5241 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talchai, C., Xuan, S., Kitamura, T. et al. Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet 44, 406–412 (2012). https://doi.org/10.1038/ng.2215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing