Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair

Abstract

Chronic kidney disease (CKD) represents a major health burden1. Its central feature of renal fibrosis is not well understood. By exome sequencing, we identified mutations in FAN1 as a cause of karyomegalic interstitial nephritis (KIN), a disorder that serves as a model for renal fibrosis. Renal histology in KIN is indistinguishable from that of nephronophthisis, except for the presence of karyomegaly2. The FAN1 protein has nuclease activity and acts in DNA interstrand cross-link (ICL) repair within the Fanconi anemia DNA damage response (DDR) pathway3,4,5,6. We show that cells from individuals with FAN1 mutations have sensitivity to the ICL-inducing agent mitomycin C but do not exhibit chromosome breakage or cell cycle arrest after diepoxybutane treatment, unlike cells from individuals with Fanconi anemia. We complemented ICL sensitivity with wild-type FAN1 but not with cDNA having mutations found in individuals with KIN. Depletion of fan1 in zebrafish caused increased DDR, apoptosis and kidney cysts. Our findings implicate susceptibility to environmental genotoxins and inadequate DNA repair as novel mechanisms contributing to renal fibrosis and CKD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Renal histology in individuals with KIN.
Figure 2: Phenotypes of FAN1-mutant cells.
Figure 3: Complementation of FAN1-mutant cells with FAN1 cDNA and epistasis analysis with genes implicated in ICL resistance.
Figure 4: Phenotype caused by loss of fan1 function in zebrafish.
Figure 5: Differential expression of FANCD2 and FAN1 in human tissues and greater DDR in CKD.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Coresh, J., Astor, B.C., Greene, T., Eknoyan, G. & Levey, A.S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 41, 1–12 (2003).

    Article  Google Scholar 

  2. Mihatsch, M.J. et al. Systemic karyomegaly associated with chronic interstitial nephritis. A new disease entity? Clin. Nephrol. 12, 54–62 (1979).

    CAS  PubMed  Google Scholar 

  3. Kratz, K. et al. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142, 77–88 (2010).

    Article  CAS  Google Scholar 

  4. Liu, T., Ghosal, G., Yuan, J., Chen, J. & Huang, J. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329, 693–696 (2010).

    Article  CAS  Google Scholar 

  5. MacKay, C. et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142, 65–76 (2010).

    Article  CAS  Google Scholar 

  6. Smogorzewska, A. et al. A genetic screen identifies FAN1, a Fanconi anemia–associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 39, 36–47 (2010).

    Article  CAS  Google Scholar 

  7. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    Article  CAS  Google Scholar 

  8. Hildebrandt, F. et al. A systematic approach to mapping recessive disease genes in individuals from outbred populations. PLoS Genet. 5, e1000353 (2009).

    Article  Google Scholar 

  9. Otto, E.A. et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat. Genet. 42, 840–850 (2010).

    Article  CAS  Google Scholar 

  10. Palmer, D., Lallu, S., Matheson, P., Bethwaite, P. & Tompson, K. Karyomegalic interstitial nephritis: a pitfall in urine cytology. Diagn. Cytopathol. 35, 179–182 (2007).

    Article  Google Scholar 

  11. Burry, A.F. Extreme dysplasia in renal epithelium of a young woman dying from hepatocarcinoma. J. Pathol. 113, 147–150 (1974).

    Article  CAS  Google Scholar 

  12. Zollinger, H.U. et al. Nephronophthisis (medullary cystic disease of the kidney). A study using electron microscopy, immunofluorescence, and a review of the morphological findings. Helv. Paediatr. Acta 35, 509–530 (1980).

    CAS  PubMed  Google Scholar 

  13. Spoendlin, M. et al. Karyomegalic interstitial nephritis: further support for a distinct entity and evidence for a genetic defect. Am. J. Kidney Dis. 25, 242–252 (1995).

    Article  CAS  Google Scholar 

  14. Baba, F., Nanovic, L., Jaffery, J.B. & Friedl, A. Karyomegalic tubulointerstitial nephritis—a case report. Pathol. Res. Pract. 202, 555–559 (2006).

    Article  Google Scholar 

  15. Godin, M. et al. Karyomegalic interstitial nephritis. Am. J. Kidney Dis. 27, 166 (1996).

    Article  CAS  Google Scholar 

  16. Verine, J., Reade, R., Janin, A. & Droz, D. Karyomegalic interstitial nephritis: a new French case. Ann. Pathol. 30, 240–242 (2010).

    Article  Google Scholar 

  17. Knipscheer, P. et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326, 1698–1701 (2009).

    Article  CAS  Google Scholar 

  18. Auerbach, A.D. Fanconi anemia and its diagnosis. Mutat. Res. 668, 4–10 (2009).

    Article  CAS  Google Scholar 

  19. Auerbach, A.D. & Wolman, S.R. Susceptibility of Fanconi's anaemia fibroblasts to chromosome damage by carcinogens. Nature 261, 494–496 (1976).

    Article  CAS  Google Scholar 

  20. Yoshikiyo, K. et al. KIAA1018/FAN1 nuclease protects cells against genomic instability induced by interstrand cross-linking agents. Proc. Natl. Acad. Sci. USA 107, 21553–21557 (2010).

    Article  CAS  Google Scholar 

  21. Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 (2005).

    Article  CAS  Google Scholar 

  22. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    Article  CAS  Google Scholar 

  23. Otto, E.A. et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat. Genet. 34, 413–420 (2003).

    Article  CAS  Google Scholar 

  24. Zhou, W., Dai, J., Attanasio, M. & Hildebrandt, F. Nephrocystin-3 is required for ciliary function in zebrafish embryos. Am. J. Physiol. Renal Physiol. 299, F55–F62 (2010).

    Article  CAS  Google Scholar 

  25. Schäfer, T. et al. Genetic and physical interaction between the NPHP5 and NPHP6 gene products. Hum. Mol. Genet. 17, 3655–3662 (2008).

    Article  Google Scholar 

  26. Sayer, J.A. et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 38, 674–681 (2006).

    Article  CAS  Google Scholar 

  27. Liu, T.X. et al. Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis. Dev. Cell 5, 903–914 (2003).

    Article  CAS  Google Scholar 

  28. Zeng, Z., Richardson, J., Verduzco, D., Mitchell, D.L. & Patton, E.E. Zebrafish have a competent p53-dependent nucleotide excision repair pathway to resolve ultraviolet B–induced DNA damage in the skin. Zebrafish 6, 405–415 (2009).

    Article  CAS  Google Scholar 

  29. Chaki, M. et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell (in the press).

  30. Koeners, M.P., Braam, B., van der Giezen, D.M., Goldschmeding, R. & Joles, J.A. A perinatal nitric oxide donor increases renal vascular resistance and ameliorates hypertension and glomerular injury in adult fawn-hooded hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1847–R1855 (2008).

    Article  CAS  Google Scholar 

  31. Mallette, F.A. & Ferbeyre, G. The DNA damage signaling pathway connects oncogenic stress to cellular senescence. Cell Cycle 6, 1831–1836 (2007).

    Article  CAS  Google Scholar 

  32. Moch, H., Spondlin, M., Schmassmann, A. & Mihatsch, M.J. Systemic karyomegaly with chronic interstitial nephritis. Discussion of the disease picture based on an autopsy case. Pathologe 15, 44–48 (1994).

    Article  CAS  Google Scholar 

  33. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. & Lander, E.S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Strauch, K. et al. Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus–trait models: application to mite sensitization. Am. J. Hum. Genet. 66, 1945–1957 (2000).

    Article  CAS  Google Scholar 

  35. Gudbjartsson, D.F., Jonasson, K., Frigge, M.L. & Kong, A. Allegro, a new computer program for multipoint linkage analysis. Nat. Genet. 25, 12–13 (2000).

    Article  CAS  Google Scholar 

  36. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  Google Scholar 

  37. Otto, E.A. et al. Mutation analysis in nephronophthisis using a combined approach of homozygosity mapping, CEL I endonuclease cleavage, and direct sequencing. Hum. Mutat. 29, 418–426 (2008).

    Article  CAS  Google Scholar 

  38. Koeners, M.P., Braam, B., van der Giezen, D.M., Goldschmeding, R. & Joles, J.A. Perinatal micronutrient supplements ameliorate hypertension and proteinuria in adult fawn-hooded hypertensive rats. Am. J. Hypertens. 23, 802–808 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the families and study individuals for their contribution. We thank A. Francois (Rouen) for contribution of pathology data and J. Amatruda (UT Southwestern) for antibodies. This research was supported by grants from the US National Institutes of Health to F.H. (DK068306), E.A.O. (DK090917) and W.Z. (DK091405), by the Burroughs Wellcome Fund Career Award for Medical Scientists and by Doris Duke Charitable Foundation Clinical Scientist Development Awards to A.S. W.Z. is a Carl W. Gottschalk Scholar of the American Society of Nephrology (ASN). A.S. is a Rita Allen Foundation Scholar and an Irma T. Hirschl Scholar. F.H. is an Investigator of the Howard Hughes Medical Institute, a Doris Duke Distinguished Clinical Scientist and a Frederick G.L. Huetwell Professor. This research was supported by grants from the European Union Seventh Framework Programme FP7/2009 under grant agreement 241955, SYSCILIA and the Netherlands Organization for Scientific Research to R.H.G. (NWO Vidi-917.66.354). This work used two Core facilities at the Michigan Diabetes Research and Training Center funded by DK020572 from the US National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. performed all zebrafish studies. E.A.O., A.C., K.D., H.Y.G., T.W.H., M.C., A.K.G., S.N., S.J.A., S.J., G.R. and F.H. prepared and evaluated exome sequences. A.C., K.D., and F.H. identified mutations in the human FAN1 gene. F.P.L. performed the breakage and cell cycle analysis. A.S. and G.R.B. performed protein blotting in subject cell lines. A.S., G.R.B. and U.V. performed sensitivity assays. S.T. performed epistasis analysis. J.W. carried out genomic mapping. S.L. performed exome capture and massively parallel sequencing. R.A., T.W.H., M.C. and A.K.G. characterized antibodies. G.G.S., J.A.J., R.G. and R.H.G. performed γH2AX histochemistry. A.C., K.D., J.D., F.B., M.S., H.M., M.J.M., A.F., J.V., R.R., H.S., M.G., D.K., G. Monga, G. Mazzucco, K.A., F.A., R.C.N., T.W., S.Z., T.B.H. and F.H. recruited patients and gathered detailed clinical information for the study. F.H. conceived of and directed the project and wrote the paper together with A.S.

Corresponding authors

Correspondence to Agata Smogorzewska or Friedhelm Hildebrandt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figures 1–6 (PDF 6949 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Otto, E., Cluckey, A. et al. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat Genet 44, 910–915 (2012). https://doi.org/10.1038/ng.2347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing