Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors

Abstract

There is increasing evidence that oncogenic transformation modifies the metabolic program of cells. A common alteration is the upregulation of glycolysis, and efforts to target glycolytic enzymes for anticancer therapy are under way. Here, we performed a genome-wide haploid genetic screen to identify resistance mechanisms to 3-bromopyruvate (3-BrPA), a drug candidate that inhibits glycolysis in a poorly understood fashion. We identified the SLC16A1 gene product, MCT1, as the main determinant of 3-BrPA sensitivity. MCT1 is necessary and sufficient for 3-BrPA uptake by cancer cells. Additionally, SLC16A1 mRNA levels are the best predictor of 3-BrPA sensitivity and are most elevated in glycolytic cancer cells. Furthermore, forced MCT1 expression in 3-BrPA–resistant cancer cells sensitizes tumor xenografts to 3-BrPA treatment in vivo. Our results identify a potential biomarker for 3-BrPA sensitivity and provide proof of concept that the selectivity of cancer-expressed transporters can be exploited for delivering toxic molecules to tumors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haploid cell genetic screening identifies MCT1 as required for 3-BrPA sensitivity.
Figure 2: MCT1-null cells are immune to the metabolic effects of 3-BrPA and do not transport it.
Figure 3: MCT1 expression is the predominant determinant of 3-BrPA sensitivity in cancer cells.
Figure 4: MCT1 expression correlates with glycolysis upregulation in cancer cells.

Similar content being viewed by others

References

  1. Vander Heiden, M.G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011).

    CAS  PubMed  Google Scholar 

  2. Thompson, C.B. Rethinking the regulation of cellular metabolism. Cold Spring Harb. Symp. Quant. Biol. 76, 23–29 (2011).

    CAS  PubMed  Google Scholar 

  3. DeBerardinis, R.J. & Thompson, C.B. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148, 1132–1144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tennant, D.A., Duran, R.V. & Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267–277 (2010).

    CAS  PubMed  Google Scholar 

  5. Birsoy, K., Sabatini, D.M. & Possemato, R. Untuning the tumor metabolic machine: targeting cancer metabolism: a bedside lesson. Nat. Med. 18, 1022–1023 (2012).

    CAS  PubMed  Google Scholar 

  6. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS  PubMed  Google Scholar 

  7. Pelicano, H., Martin, D.S., Xu, R.H. & Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633–4646 (2006).

    CAS  PubMed  Google Scholar 

  8. Xu, R.H. et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 65, 613–621 (2005).

    CAS  PubMed  Google Scholar 

  9. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vander Heiden, M.G. et al. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem. Pharmacol. 79, 1118–1124 (2010).

    CAS  PubMed  Google Scholar 

  11. Le Floch, R. et al. CD147 subunit of lactate/H+ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proc. Natl. Acad. Sci. USA 108, 16663–16668 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wood, T.E. et al. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol. Cancer Ther. 7, 3546–3555 (2008).

    CAS  PubMed  Google Scholar 

  13. Stein, M. et al. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate 70, 1388–1394 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pedersen, P.L. 3-bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective “small molecule” anti-cancer agent taken from labside to bedside: introduction to a special issue. J. Bioenerg. Biomembr. 44, 1–6 (2012).

    CAS  PubMed  Google Scholar 

  15. Ko, Y.H. et al. A translational study “case report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J. Bioenerg. Biomembr. 44, 163–170 (2012).

    CAS  PubMed  Google Scholar 

  16. Shoshan, M.C. 3-bromopyruvate: targets and outcomes. J. Bioenerg. Biomembr. 44, 7–15 (2012).

    CAS  PubMed  Google Scholar 

  17. Ganapathy-Kanniappan, S. et al. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res. 29, 4909–4918 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pereira da Silva, A.P. et al. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochem. J. 417, 717–726 (2009).

    CAS  PubMed  Google Scholar 

  19. Dell'Antone, P. Targets of 3-bromopyruvate, a new, energy depleting, anticancer agent. Med. Chem. 5, 491–496 (2009).

    CAS  PubMed  Google Scholar 

  20. Dell'Antone, P. Inactivation of H+-vacuolar ATPase by the energy blocker 3-bromopyruvate, a new antitumour agent. Life Sci. 79, 2049–2055 (2006).

    CAS  PubMed  Google Scholar 

  21. Blessinger, K.J. & Tunnicliff, G. Kinetics of inactivation of 4-aminobutyrate aminotransferase by 3-bromopyruvate. Biochem. Cell Biol. 70, 716–719 (1992).

    CAS  PubMed  Google Scholar 

  22. Tunnicliff, G. & Ngo, T.T. Mechanism of inactivation of brain glutamic decarboxylase by 3-bromopyruvate. Int. J. Biochem. 9, 249–252 (1978).

    CAS  PubMed  Google Scholar 

  23. Arendt, T., Schugens, M.M. & Marchbanks, R.M. Reversible inhibition of acetylcholine synthesis and behavioural effects caused by 3-bromopyruvate. J. Neurochem. 55, 1474–1479 (1990).

    CAS  PubMed  Google Scholar 

  24. Jardim-Messeder, D., Camacho-Pereira, J. & Galina, A. 3-bromopyruvate inhibits calcium uptake by sarcoplasmic reticulum vesicles but not SERCA ATP hydrolysis activity. Int. J. Biochem. Cell Biol. 44, 801–807 (2012).

    CAS  PubMed  Google Scholar 

  25. Carette, J.E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    CAS  PubMed  Google Scholar 

  26. Layton, J.E. Undertaking a successful gynogenetic haploid screen in zebrafish. Methods Mol. Biol. 546, 31–44 (2009).

    CAS  PubMed  Google Scholar 

  27. Elling, U. et al. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9, 563–574 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Carette, J.E. et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477, 340–343 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Guimaraes, C.P. et al. Identification of host cell factors required for intoxication through use of modified cholera toxin. J. Cell Biol. 195, 751–764 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Carette, J.E. et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol. 29, 542–546 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Morris, M.E. & Felmlee, M.A. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse γ-hydroxybutyric acid. AAPS J. 10, 311–321 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pinheiro, C. et al. Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma. Histopathology 56, 860–867 (2010).

    PubMed  Google Scholar 

  33. Pinheiro, C. et al. Monocarboxylate transporters 1 and 4 are associated with CD147 in cervical carcinoma. Dis. Markers 26, 97–103 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mathupala, S.P., Parajuli, P. & Sloan, A.E. Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery 55, 1410–1419 discussion 1419 (2004).

    PubMed  Google Scholar 

  35. Koukourakis, M.I., Giatromanolaki, A., Bougioukas, G. & Sivridis, E. Lung cancer: a comparative study of metabolism related protein expression in cancer cells and tumor associated stroma. Cancer Biol. Ther. 6, 1476–1479 (2007).

    CAS  PubMed  Google Scholar 

  36. Pinheiro, C. et al. Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows Arch. 452, 139–146 (2008).

    CAS  PubMed  Google Scholar 

  37. Poole, R.C. & Halestrap, A.P. Interaction of the erythrocyte lactate transporter (monocarboxylate transporter 1) with an integral 70-kDa membrane glycoprotein of the immunoglobulin superfamily. J. Biol. Chem. 272, 14624–14628 (1997).

    CAS  PubMed  Google Scholar 

  38. Kirk, P. et al. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 19, 3896–3904 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mihaylova, M.M. & Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodrigues-Ferreira, C., da Silva, A.P. & Galina, A. Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase. J. Bioenerg. Biomembr. 44, 39–49 (2012).

    CAS  PubMed  Google Scholar 

  41. Ko, Y.H. et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem. Biophys. Res. Commun. 324, 269–275 (2004).

    CAS  PubMed  Google Scholar 

  42. Ko, Y.H., Pedersen, P.L. & Geschwind, J.F. Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett. 173, 83–91 (2001).

    CAS  PubMed  Google Scholar 

  43. Sanborn, B.M., Felberg, N.T. & Hollocher, T.C. The inactivation of succinate dehydrogenase by bromopyruvate. Biochim. Biophys. Acta 227, 219–231 (1971).

    CAS  PubMed  Google Scholar 

  44. Meloche, H.P., Luczak, M.A. & Wurster, J.M. The substrate analog, bromopyruvate, as both a substrate and alkylating agent for 2-keto-3-deoxy-6-phosphogluconic aldolase. Kinetic and stereochemical studies. J. Biol. Chem. 247, 4186–4191 (1972).

    CAS  PubMed  Google Scholar 

  45. Yun, S.L. & Suelter, C.H. Modification of yeast pyruvate kinase by an active site–directed reagent, bromopyruvate. J. Biol. Chem. 254, 1811–1815 (1979).

    CAS  PubMed  Google Scholar 

  46. Acan, N.L. & Ozer, N. Modification of human erythrocyte pyruvate kinase by an active site–directed reagent: bromopyruvate. J. Enzyme Inhib. 16, 457–464 (2001).

    CAS  PubMed  Google Scholar 

  47. Halestrap, A.P. The monocarboxylate transporter family—structure and functional characterization. IUBMB Life 64, 1–9 (2012).

    CAS  PubMed  Google Scholar 

  48. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lis, P. et al. Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae. J. Bioenerg. Biomembr. 44, 155–161 (2012).

    CAS  PubMed  Google Scholar 

  50. Murray, C.M. et al. Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat. Chem. Biol. 1, 371–376 (2005).

    CAS  PubMed  Google Scholar 

  51. Queirós, O. et al. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. J. Bioenerg. Biomembr. 44, 141–153 (2012).

    PubMed  Google Scholar 

  52. Göthe, P.O. & Nyman, P.O. Inactivation of human erythrocyte carbonic anhydrases by bromopyruvate. FEBS Lett. 21, 159–164 (1972).

    PubMed  Google Scholar 

  53. Thangaraju, M. et al. Transport by SLC5A8 with subsequent inhibition of histone deacetylase 1 (HDAC1) and HDAC3 underlies the antitumor activity of 3-bromopyruvate. Cancer 115, 4655–4666 (2009).

    CAS  PubMed  Google Scholar 

  54. Ganapathy, V., Thangaraju, M. & Prasad, P.D. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol. Ther. 121, 29–40 (2009).

    CAS  PubMed  Google Scholar 

  55. Gupta, N. et al. Upregulation of the amino acid transporter ATB0,+ (SLC6A14) in colorectal cancer and metastasis in humans. Biochim. Biophys. Acta 1741, 215–223 (2005).

    CAS  PubMed  Google Scholar 

  56. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Finley, L.W. et al. Skeletal muscle transcriptional coactivator PGC-1α mediates mitochondrial, but not metabolic, changes during calorie restriction. Proc. Natl. Acad. Sci. USA 109, 2931–2936 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Sabatini laboratory and F. Reinhardt for advice and assistance. This work was supported by grants from the US National Institutes of Health (NIH; CA103866) and the David H. Koch Institute for Integrative Cancer Research to D.M.S. and fellowships from the Jane Coffin Childs Memorial Fund to K.B. and US National Science Foundation to T.W. D.M.S. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

K.B. and D.M.S. conceived the project. K.B. designed and performed most experiments and data analyses, with input from D.M.S. T.W. assisted with initial experiments and data analysis. C.E.K., O.H.Y., R.P., W.W.C., Y.G. and A.W.H. assisted with experiments, and T.R.P., J.E.C. and T.R.B. assisted with haploid genetic screening. C.B.C. performed metabolite profiling and analysis. K.B. and D.M.S. wrote and edited the manuscript.

Corresponding author

Correspondence to David M Sabatini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 4126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birsoy, K., Wang, T., Possemato, R. et al. MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat Genet 45, 104–108 (2013). https://doi.org/10.1038/ng.2471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2471

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing