Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Single-copy insertion of transgenes in Caenorhabditis elegans

Abstract

At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can be obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic overview of MosSCI.
Figure 2: Single-copy insertions of transgenes.
Figure 3: Independent unc-18::mCherry transgenes are expressed at near-endogenous levels.
Figure 4: MosSCI inserts are expressed in the female and male germlines.
Figure 5: MosSCI inserts can be generated directly by injection.

Similar content being viewed by others

References

  1. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thellmann, M., Hatzold, J. & Conradt, B. The Snail-like CES-1 protein of C. elegans can block the expression of the BH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development 130, 4057–4071 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Hsieh, J. & Fire, A. Recognition and silencing of repeated DNA. Annu. Rev. Genet. 34, 187–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Hsieh, J. et al. The RING finger/B-box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans. Genes Dev. 13, 2958–2970 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kelly, W.G., Xu, S., Montgomery, M.K. & Fire, A. Distinct requirements for somatic and germline expression of a generally expressed Caernorhabditis elegans gene. Genetics 146, 227–238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Hammarlund, M., Palfreyman, M.T., Watanabe, S., Olsen, S. & Jorgensen, E.M. Open syntaxin docks synaptic vesicles. PLoS Biol. 5, e198 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sha, K. & Fire, A. Imprinting capacity of gamete lineages in Caenorhabditis elegans. Genetics 170, 1633–1652 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berezikov, E., Bargmann, C.I. & Plasterk, R.H. Homologous gene targeting in Caenorhabditis elegans by biolistic transformation. Nucleic Acids Res. 32, e40 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barrett, P.L., Fleming, J.T. & Gobel, V. Targeted gene alteration in Caenorhabditis elegans by gene conversion. Nat. Genet. 36, 1231–1237 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Plasterk, R.H. & Groenen, J.T. Targeted alterations of the Caenorhabditis elegans genome by transgene instructed DNA double strand break repair following Tc1 excision. EMBO J. 11, 287–290 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bessereau, J.L. et al. Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 413, 70–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Robert, V. & Bessereau, J.L. Targeted engineering of the Caenorhabditis elegans genome following Mos1-triggered chromosomal breaks. EMBO J. 26, 170–183 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Duverger, Y. et al. A semi-automated high-throughput approach to the generation of transposon insertion mutants in the nematode Caenorhabditis elegans. Nucleic Acids Res. 35, e11 (2007).

    Article  PubMed  Google Scholar 

  15. Maduro, M. & Pilgrim, D. Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141, 977–988 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim, J.K. et al. Functional genomic analysis of RNA interference in C. elegans. Science 308, 1164–1167 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Vastenhouw, N.L. et al. Gene expression: long-term gene silencing by RNAi. Nature 442, 882 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Reboul, J. et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat. Genet. 34, 35–41 (2003).

    Article  PubMed  Google Scholar 

  20. Dupuy, D. et al. A first version of the Caenorhabditis elegans Promoterome. Genome Res. 14, 2169–2175 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, J.M., Cooper, D.N., Chuzhanova, N., Ferec, C. & Patrinos, G.P. Gene conversion: mechanisms, evolution and human disease. Nat. Rev. Genet. 8, 762–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Robert, V., Davis, M.W., Jorgensen, E.M. & Bessereau, J.L. Gene conversion and end-joining repair double-strand breaks in the C. elegans germline. Genetics 180, 673–679 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gloor, G.B., Nassif, N.A., Johnson-Schlitz, D.M., Preston, C.R. & Engels, W.R. Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253, 1110–1117 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Nassif, N., Penney, J., Pal, S., Engels, W.R. & Gloor, G.B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14, 1613–1625 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stinchcomb, D.T., Shaw, J.E., Carr, S.H. & Hirsh, D. Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol. Cell. Biol. 5, 3484–3496 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kamath, R.S., Martinez-Campos, M., Zipperlen, P., Fraser, A.G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in. Caenorhabditis elegans. Genome Biol. 2, RESEARCH0002 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Segalat and the NemaGENETAG consortium for generating and supplying Mos1 insertion alleles; L. Salkoff for twk-18 cDNA clones; G. Seydoux for promoter plasmids; J. Rand for UNC-18 antibodies; C. Thacker at the Utah worm core facility for generating biolistic transformants; G. Stanfield for help in confirming sperm expression; J.-L. Bessereau and V. Robert for sharing unpublished data; and M. Ailion, G. Hollopeter and the rest of the Jorgensen laboratory for scientific input. E.M.J. is an Investigator of the Howard Hughes Medical Institute. S.-P.O. is an Investigator of the Danish National Research Foundation. C.F.-J. was funded by fellowships from Fonden af 17.12.1981 and the Lundbeck Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.F.-J., M.W.D., C.E.H. and E.M.J. designed the experiments. C.F.-J., M.W.D., C.E.H., B.J.N. and J.M.T. carried out the experiments. E.M.J., M.G. and S.-P.O. supervised and funded the experiments. C.F.-J., M.W.D. and E.M.J. wrote the manuscript.

Corresponding author

Correspondence to Erik M Jorgensen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1, Supplementary Methods (PDF 2804 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frøkjær-Jensen, C., Wayne Davis, M., Hopkins, C. et al. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40, 1375–1383 (2008). https://doi.org/10.1038/ng.248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing