Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus

Abstract

Chronic infection with hepatitis C virus (HCV) is a common cause of liver cirrhosis and cancer. We performed RNA sequencing in primary human hepatocytes activated with synthetic double-stranded RNA to mimic HCV infection. Upstream of IFNL3 (IL28B) on chromosome 19q13.13, we discovered a new transiently induced region that harbors a dinucleotide variant ss469415590 (TT or ΔG), which is in high linkage disequilibrium with rs12979860, a genetic marker strongly associated with HCV clearance. ss469415590[ΔG] is a frameshift variant that creates a novel gene, designated IFNL4, encoding the interferon-λ4 protein (IFNL4), which is moderately similar to IFNL3. Compared to rs12979860, ss469415590 is more strongly associated with HCV clearance in individuals of African ancestry, although it provides comparable information in Europeans and Asians. Transient overexpression of IFNL4 in a hepatoma cell line induced STAT1 and STAT2 phosphorylation and the expression of interferon-stimulated genes. Our findings provide new insights into the genetic regulation of HCV clearance and its clinical management.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of a novel transcribed region upstream of IFNL3.
Figure 2: Protein sequence analysis.
Figure 3: Median decrease in HCV RNA levels (log10 international units (IU)/ml) in African-American participants in the Virahep-C study during the first 28 d of treatment with pegIFN-α/RBV.
Figure 4: Analysis of the biological activity of the novel proteins.
Figure 5: Confocal imaging of IFNL4 in PHHs from liver donors with different ss469415590 genotypes.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

NCBI Reference Sequence

References

  1. NIH. National Institutes of Health Consensus Development Conference Statement. Management of hepatitis C 2002 (June 10–12, 2002). Gastroenterology 123, 2082–2099 (2002).

  2. NIH. NIH Consensus Statement on Management of Hepatitis C: 2002. NIH Consens. State Sci. Statements 19, 1–46 (2002).

  3. El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142, 1264–1273 e1 (2012).

    Article  PubMed  Google Scholar 

  4. European Association of the Study of the Liver. 2011 European Association of the Study of the Liver hepatitis C virus clinical practice guidelines. Liver Int. 32 (suppl. 1), 2–8 (2012).

    Article  CAS  Google Scholar 

  5. Sarrazin, C., Hezode, C., Zeuzem, S. & Pawlotsky, J.M. Antiviral strategies in hepatitis C virus infection. J. Hepatol. 56 (suppl. 1), S88–S100 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Ciesek, S. & Manns, M.P. Hepatitis in 2010: the dawn of a new era in HCV therapy. Nat. Rev. Gastroenterol. Hepatol. 8, 69–71 (2011).

    Article  PubMed  Google Scholar 

  7. Rauch, A. et al. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138, 1338–1345 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Thomas, D.L. et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461, 798–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment–induced viral clearance. Nature 461, 399–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Suppiah, V. et al. IL28B is associated with response to chronic hepatitis C interferon-α and ribavirin therapy. Nat. Genet. 41, 1100–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka, Y. et al. Genome-wide association of IL28B with response to pegylated interferon-α and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41, 1105–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Kotenko, S.V. et al. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 4, 69–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Sheppard, P. et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 4, 63–68 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Marcello, T. et al. Interferons α and λ inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131, 1887–1898 (2006).

    Article  PubMed  Google Scholar 

  15. Robek, M.D., Boyd, B.S. & Chisari, F.V. λ interferon inhibits hepatitis B and C virus replication. J. Virol. 79, 3851–3854 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muir, A.J. et al. Phase 1b study of pegylated interferon λ1 with or without ribavirin in patients with chronic genotype 1 hepatitis C virus infection. Hepatology 52, 822–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Kempuraj, D. et al. Interleukin-28 and 29 (IL-28 and IL-29): new cytokines with anti-viral activities. Int. J. Immunopathol. Pharmacol. 17, 103–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, Z. et al. Type III interferon (IFN) induces a type I IFN–like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J. Virol. 81, 7749–7758 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Honda, M. et al. Hepatic ISG expression is associated with genetic variation in interleukin 28B and the outcome of IFN therapy for chronic hepatitis C. Gastroenterology 139, 499–509 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Marukian, S. et al. Hepatitis C virus induces interferon-λ and interferon-stimulated genes in primary liver cultures. Hepatology 54, 1913–1923 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Dill, M.T. et al. Interferon-induced gene expression is a stronger predictor of treatment response than IL28B genotype in patients with hepatitis C. Gastroenterology 140, 1021–1031 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Urban, T.J. et al. IL28B genotype is associated with differential expression of intrahepatic interferon-stimulated genes in patients with chronic hepatitis C. Hepatology 52, 1888–1896 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Phillips, J.E. & Corces, V.G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rosenbloom, K.R. et al. ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucleic Acids Res. 40, D912–D917 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Shyu, A.B., Wilkinson, M.F. & van Hoof, A. Messenger RNA regulation: to translate or to degrade. EMBO J. 27, 471–481 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trivella, D.B., Ferreira-Junior, J.R., Dumoutier, L., Renauld, J.C. & Polikarpov, I. Structure and function of interleukin-22 and other members of the interleukin-10 family. Cell Mol. Life Sci. 67, 2909–2935 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Gad, H.H. et al. Interferon-λ is functionally an interferon but structurally related to the interleukin-10 family. J. Biol. Chem. 284, 20869–20875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yoon, S.I., Logsdon, N.J., Sheikh, F., Donnelly, R.P. & Walter, M.R. Conformational changes mediate interleukin-10 receptor 2 (IL-10R2) binding to IL-10 and assembly of the signaling complex. J. Biol. Chem. 281, 35088–35096 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Yoon, S.I. et al. Structure and mechanism of receptor sharing by the IL-10R2 common chain. Structure 18, 638–648 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  31. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  32. Conjeevaram, H.S. et al. Peginterferon and ribavirin treatment in African American and Caucasian American patients with hepatitis C genotype 1. Gastroenterology 131, 470–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Di Bisceglie, A.M. et al. Prolonged therapy of advanced chronic hepatitis C with low-dose peginterferon. N. Engl. J. Med. 359, 2429–2441 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shebl, F.M. et al. IL28B rs12979860 genotype and spontaneous clearance of hepatitis C virus in a multi-ethnic cohort of injection drug users: evidence for a supra-additive association. J. Infect. Dis. 204, 1843–1847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vlahov, D. et al. The ALIVE study, a longitudinal study of HIV-1 infection in intravenous drug users: description of methods and characteristics of participants. NIDA Res. Monogr. 109, 75–100 (1991).

    CAS  PubMed  Google Scholar 

  36. Thompson, A.J. et al. Interleukin-28B polymorphism improves viral kinetics and is the strongest pretreatment predictor of sustained virologic response in genotype 1 hepatitis C virus. Gastroenterology 139, 120–129 e18 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Howell, C.D. et al. Single nucleotide polymorphism upstream of interleukin 28B associated with phase 1 and phase 2 of early viral kinetics in patients infected with HCV genotype 1. J. Hepatol. 56, 557–563 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Smith, K.R. et al. Identification of improved IL28B SNPs and haplotypes for prediction of drug response in treatment of hepatitis C using massively parallel sequencing in a cross-sectional European cohort. Genome Med. 3, 57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fischer, J. et al. Combined effects of different interleukin-28B gene variants on the outcome of dual combination therapy in chronic hepatitis C virus type 1 infection. Hepatology 55, 1700–1710 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Jo, J. et al. Analysis of CD8+ T-cell-mediated inhibition of hepatitis C virus replication using a novel immunological model. Gastroenterology 136, 1391–1401 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Dill, M.T. et al. Interferon-induced gene expression is a stronger predictor of treatment response than IL28B genotype in patients with hepatitis C. Gastroenterology 140, 1021–1031 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Asahina, Y. et al. Association of gene expression involving innate immunity and genetic variation in interleukin 28B with antiviral response. Hepatology 55, 20–29 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Onomoto, K. et al. Dysregulation of IFN system can lead to poor response to pegylated interferon and ribavirin therapy in chronic hepatitis C. PLoS ONE 6, e19799 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sarasin-Filipowicz, M. et al. Interferon signaling and treatment outcome in chronic hepatitis C. Proc. Natl. Acad. Sci. USA 105, 7034–7039 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Katsounas, A., Schlaak, J.F. & Lempicki, R.A. CCL5: a double-edged sword in host defense against the hepatitis C virus. Int. Rev. Immunol. 30, 366–378 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Tappero, G. et al. Intrahepatic expression of c-fos, c-myb and c-myc oncogenes: correlation with virus-induced chronic liver disease and response to interferon. Ital. J. Gastroenterol. Hepatol. 29, 148–154 (1997).

    CAS  PubMed  Google Scholar 

  47. Smeyne, R.J. et al. Continuous c-fos expression precedes programmed cell death in vivo. Nature 363, 166–169 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Kang, S.M. et al. c-Fos regulates hepatitis C virus propagation. FEBS Lett. 585, 3236–3244 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Okamura, K., Feuk, L., Marques-Bonet, T., Navarro, A. & Scherer, S.W. Frequent appearance of novel protein-coding sequences by frameshift translation. Genomics 88, 690–697 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. White, S.H. The evolution of proteins from random amino acid sequences: II. Evidence from the statistical distributions of the lengths of modern protein sequences. J. Mol. Evol. 38, 383–394 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Uccellini, L. et al. HCV RNA levels in a multiethnic cohort of injection drug users: human genetic, viral and demographic associations. Hepatology 56, 86–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Chu, T.W. et al. Effect of IL28B genotype on early viral kinetics during interferon-free treatment of patients with chronic hepatitis C. Gastroenterology 142, 790–795 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Sonneveld, M.J. et al. Polymorphisms near IL28B and serologic response to peginterferon in HBeAg-positive patients with chronic hepatitis B. Gastroenterology 142, 513–520 e1 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Lampertico, P. et al. IL28B polymorphisms predict interferon-related HBsAg seroclearance in genotype D HBeAg-negative patients with chronic hepatitis B. Hepatology published online; doi:10.1002/hep.25749 (2 April 2012).

  55. Davar, D., Tarhini, A.A. & Kirkwood, J.M. Adjuvant therapy for melanoma. Cancer J. 18, 192–202 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dickensheets, H.L., Venkataraman, C., Schindler, U. & Donnelly, R.P. Interferons inhibit activation of STAT6 by interleukin 4 in human monocytes by inducing SOCS-1 gene expression. Proc. Natl. Acad. Sci. USA 96, 10800–10805 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pepe, M.S. The Statistical Evaluation of Medical Tests for Classification and Prediction (Oxford University Press, Oxford, 2003).

Download references

Acknowledgements

We thank the National Cancer Institute Sequencing Core Facility for help with RNA-seq. This research was supported by the Intramural Research Program of the US National Institutes of Health (National Cancer Institute, Division of Cancer Epidemiology and Genetics; National Institute for Diabetes, Digestive and Kidney Diseases), as well as the following grants: DA R01 013324 (J.A. and D.L.T.); ALIVE cohort, R01-DA-04334 and R01-DA-12568, and US National Institutes of Health grants R01-DA09532, R01-DA12109, R01-DA13245 and R01-DA16159 (B.R.E.); National Cancer Institute contracts N02-CP-91027 and N01-CO-12400 (B.R.E.); Substance Abuse and Mental Health Services Administration grant H79-TI12103 (B.R.E.); and the National Cancer Institute Director's Innovation Award (L.P.-O.). The Virahep-C and HALT-C studies were conducted, respectively, by the Virahep-C and HALT-C Investigators and supported by the National Institute of Diabetes and Digestive and Kidney Diseases. The data and samples from the Virahep-C and HALT-C studies reported here were supplied by the National Institute of Diabetes and Digestive and Kidney Diseases Central Repositories. This manuscript was not prepared in collaboration with the Virahep-C study group or the HALT-C study group and does not necessarily reflect the opinions or views of the Virahep-C Trial and HALT-C Trial, the National Institute of Diabetes and Digestive and Kidney Diseases Central Repositories or the National Institute of Diabetes and Digestive and Kidney Diseases. The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services nor does mention of trade names, commercial products or organizations imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Contributions

L.P.-O. and T.R.O. conceived and supervised the project. J.A., H.L.B., B.R.E., C.D.H., T.R.M. and D.L.T. performed the clinical and epidemiological studies from which DNA samples and data were collected. L.P.-O., B.R. and R.P.D. designed the experiments. L.P.-O., B.M., W.T., H.P., H.D., D.H., P.P.-G., I.K., A.M., N.B., M.T., L.L., F.S., B.R. and R.P.D. performed experiments and analysis. T.R.O., R.M.P. and S.C. performed statistical analysis of genetic association. L.P.-O. and T.R.O. wrote the manuscript. All authors contributed to scientific discussions and approved the final manuscript.

Corresponding authors

Correspondence to Ludmila Prokunina-Olsson or Thomas R O'Brien.

Ethics declarations

Competing interests

L.P.-O., B.M., R.P.D. and T.R.O. are inventors on a patent application filed by the National Cancer Institute on the basis of these findings.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–13, Supplementary Figures 1–11 and Supplementary Note (PDF 1818 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokunina-Olsson, L., Muchmore, B., Tang, W. et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 45, 164–171 (2013). https://doi.org/10.1038/ng.2521

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2521

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing