Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease

Abstract

Pedigree, linkage and association studies are consistent with heritable variation for complex disease due to the segregation of genetic factors in families and in the population. In contrast, de novo mutations make only minor contributions to heritability estimates for complex traits. Nonetheless, some de novo variants are known to be important in disease etiology. The identification of risk-conferring de novo variants will contribute to the discovery of etiologically relevant genes and pathways and may help in genetic counseling. There is considerable interest in the role of such mutations in complex neuropsychiatric disease, largely driven by new genotyping and sequencing technologies. An important role for large de novo copy number variations has been established. Recently, whole-exome sequencing has been used to extend the investigation of de novo variation to point mutations in protein-coding regions. Here, we consider several challenges for the interpretation of such mutations in the context of their role in neuropsychiatric disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Veltman, J.A. & Brunner, H.G. De novo mutations in human genetic disease. Nat. Rev. Genet. 13, 565–575 (2012).

    Article  CAS  Google Scholar 

  2. Iossifov, I. et al. De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299 (2012).

    Article  CAS  Google Scholar 

  3. Neale, B.M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  CAS  Google Scholar 

  4. O'Roak, B.J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).

    Article  CAS  Google Scholar 

  5. O'Roak, B.J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  CAS  Google Scholar 

  6. Sanders, S.J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  CAS  Google Scholar 

  7. Vissers, L.E.L.M. et al. A de novo paradigm for mental retardation. Nat. Genet. 42, 1109–1112 (2010).

    Article  CAS  Google Scholar 

  8. Girard, S.L. et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat. Genet. 43, 860–863 (2011).

    Article  CAS  Google Scholar 

  9. Xu, B. et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat. Genet. 44, 1365–1369 (2012).

    Article  CAS  Google Scholar 

  10. Xu, B. et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat. Genet. 43, 864–868 (2011).

    Article  CAS  Google Scholar 

  11. Kong, A. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488, 471–475 (2012).

    Article  CAS  Google Scholar 

  12. Awadalla, P. et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am. J. Hum. Genet. 87, 316–324 (2010).

    Article  CAS  Google Scholar 

  13. Goriely, A. & Wilkie, A.O. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am. J. Hum. Genet. 90, 175–200 (2012).

    Article  CAS  Google Scholar 

  14. Vermeesch, J.R., Balikova, I., Schrander-Stumpel, C., Fryns, J.P. & Devriendt, K. The causality of de novo copy number variants is overestimated. Eur. J. Hum. Genet. 19, 1112–1113 (2011).

    Article  Google Scholar 

  15. Bamshad, M.J. et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12, 745–755 (2011).

    Article  CAS  Google Scholar 

  16. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  17. Li, Y. et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat. Genet. 42, 969–972 (2010).

    Article  CAS  Google Scholar 

  18. Nelson, M.R. et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337, 100–104 (2012).

    Article  CAS  Google Scholar 

  19. Tennessen, J.A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69 (2012).

    Article  CAS  Google Scholar 

  20. Bell, C.J. et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci. Transl. Med. 3, 65ra4 (2011).

    Article  CAS  Google Scholar 

  21. MacArthur, D.G. et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335, 823–828 (2012).

    Article  CAS  Google Scholar 

  22. Dharmadhikari, A.V. et al. Small rare recurrent deletions and reciprocal duplications in 2q21.1, including brain-specific ARHGEF4 and GPR148. Hum. Mol. Genet. 21, 3345–3355 (2012).

    Article  CAS  Google Scholar 

  23. Vacic, V. et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 471, 499–503 (2011).

    Article  CAS  Google Scholar 

  24. Wang, K. et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459, 528–533 (2009).

    Article  CAS  Google Scholar 

  25. Sullivan, P.F., Daly, M.J. & O'Donovan, M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat. Rev. Genet. 13, 537–551 (2012).

    Article  CAS  Google Scholar 

  26. Kryukov, G.V., Pennacchio, L.A. & Sunyaev, S.R. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am. J. Hum. Genet. 80, 727–739 (2007).

    Article  CAS  Google Scholar 

  27. Hodgkinson, A. & Eyre-Walker, A. Variation in the mutation rate across mammalian genomes. Nat. Rev. Genet. 12, 756–766 (2011).

    Article  CAS  Google Scholar 

  28. Hodgkinson, A., Ladoukakis, E. & Eyre-Walker, A. Cryptic variation in the human mutation rate. PLoS Biol. 7, e1000027 (2009).

    Article  Google Scholar 

  29. Green, P., Ewing, B., Miller, W., Thomas, P.J. & Green, E.D. Transcription-associated mutational asymmetry in mammalian evolution. Nat. Genet. 33, 514–517 (2003).

    Article  CAS  Google Scholar 

  30. Kiezun, A. et al. Exome sequencing and the genetic basis of complex traits. Nat. Genet. 44, 623–630 (2012).

    Article  CAS  Google Scholar 

  31. Need, A.C. et al. Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am. J. Hum. Genet. 91, 303–312 (2012).

    Article  CAS  Google Scholar 

  32. Vassos, E. et al. Penetrance for copy number variants associated with schizophrenia. Hum. Mol. Genet. 19, 3477–3481 (2010).

    Article  CAS  Google Scholar 

  33. Zhao, X. et al. A unified genetic theory for sporadic and inherited autism. Proc. Natl. Acad. Sci. USA 104, 12831–12836 (2007).

    Article  CAS  Google Scholar 

  34. McClellan, J.M., Susser, E. & King, M.-C. Schizophrenia: a common disease caused by multiple rare alleles. Br. J. Psychiatry 190, 194–199 (2007).

    Article  Google Scholar 

  35. Krawitz, P.M. et al. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat. Genet. 42, 827–829 (2010).

    Article  CAS  Google Scholar 

  36. Najmabadi, H. et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478, 57–63 (2011).

    Article  CAS  Google Scholar 

  37. Amir, R.E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  CAS  Google Scholar 

  38. Lichtenstein, P., Carlstrom, E., Rastam, M., Gillberg, C. & Anckarsater, H. The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am. J. Psychiatry 167, 1357–1363 (2010).

    Article  Google Scholar 

  39. Lichtenstein, P. et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234–239 (2009).

    Article  CAS  Google Scholar 

  40. Sanders, S.J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    Article  CAS  Google Scholar 

  41. Need, A.C. et al. Clinical application of exome sequencing in undiagnosed genetic conditions. J. Med. Genet. 49, 353–361 (2012).

    Article  CAS  Google Scholar 

  42. Kim, Y., Zerwas, S., Trace, S.E. & Sullivan, P.F. Schizophrenia genetics: where next? Schizophr. Bull. 37, 456–463 (2011).

    Article  Google Scholar 

  43. State, M.W. & Levitt, P. The conundrums of understanding genetic risks for autism spectrum disorders. Nat. Neurosci. 14, 1499–1506 (2011).

    Article  CAS  Google Scholar 

  44. Sullivan, P.F., Kendler, K.S. & Neale, M.C. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch. Gen. Psychiatry 60, 1187–1192 (2003).

    Article  Google Scholar 

  45. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  46. Luo, R. et al. Genome-wide transcriptome profiling reveals the functional impact of rare de novo and recurrent CNVs in autism spectrum disorders. Am. J. Hum. Genet. 91, 38–55 (2012).

    Article  CAS  Google Scholar 

  47. Firth, H.V. et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using Ensembl resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    Article  CAS  Google Scholar 

  48. Klassen, T. et al. Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell 145, 1036–1048 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Australian Research Council to N.R.W. (FT0991360), the Australian National Health and Medical Research Council to P.M.V. (grants 613672, 613601 and 1011506), B.J.M. (grants 631406 and 631671) and N.R.W. (grant 613602, 613608) and Queensland Health to B.J.M.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and wrote the manuscript.

Corresponding author

Correspondence to Jacob Gratten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note and Supplementary Figure 1 (PDF 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gratten, J., Visscher, P., Mowry, B. et al. Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease. Nat Genet 45, 234–238 (2013). https://doi.org/10.1038/ng.2555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing