Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity

Abstract

Parkinson's disease (PD), dementia with Lewy bodies and multiple system atrophy, collectively referred to as synucleinopathies, are associated with a diverse group of genetic and environmental susceptibilities. The best studied of these is PD. α-Synuclein (α-syn) has a key role in the pathogenesis of both familial and sporadic PD, but evidence linking it to other predisposition factors is limited. Here we report a strong genetic interaction between α-syn and the yeast ortholog of the PD-linked gene ATP13A2 (also known as PARK9). Dopaminergic neuron loss caused by α-syn overexpression in animal and neuronal PD models is rescued by coexpression of PARK9. Further, knockdown of the ATP13A2 ortholog in Caenorhabditis elegans enhances α-syn misfolding. These data provide a direct functional connection between α-syn and another PD susceptibility locus. Manganese exposure is an environmental risk factor linked to PD and PD-like syndromes. We discovered that yeast PARK9 helps to protect cells from manganese toxicity, revealing a connection between PD genetics (α-syn and PARK9) and an environmental risk factor (PARK9 and manganese). Finally, we show that additional genes from our yeast screen, with diverse functions, are potent modifiers of α-syn–induced neuron loss in animals, establishing a diverse, highly conserved interaction network for α-syn.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction between α-syn and the yeast PARK9 homolog.
Figure 2: PARK9 antagonizes α-syn-mediated dopaminergic neuron degeneration in C.elegans.
Figure 3: PARK9 antagonizes α-syn–mediated dopaminergic neuron degeneration in rat primary midbrain cultures.
Figure 4: Ypk9 is localized to the vacuole in yeast and ATP13A2 subject-based mutations affect its ability to rescue α-syn toxicity.
Figure 5: PARK9 protects cells from elevated manganese levels.

Similar content being viewed by others

References

  1. Lee, V.M. & Trojanowski, J.Q. Mechanisms of Parkinson's disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52, 33–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Chartier-Harlin, M.C. et al. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Ibanez, P. et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet 364, 1169–1171 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Singleton, A.B. et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Spillantini, M.G. et al. Alpha-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Auluck, P.K., Chan, H.Y., Trojanowski, J.Q., Lee, V.M. & Bonini, N.M. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295, 865–868 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Cao, S., Gelwix, C.C., Caldwell, K.A. & Caldwell, G.A. Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J. Neurosci. 25, 3801–3812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Masliah, E. et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287, 1265–1269 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Lo Bianco, C., Ridet, J.L., Schneider, B.L., Deglon, N. & Aebischer, P. alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc. Natl. Acad. Sci. USA 99, 10813–10818 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Outeiro, T.F. & Lindquist, S. Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302, 1772–1775 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gitler, A.D. Beer and bread to brains and beyond: can yeast cells teach us about neurodegenerative disease? Neurosignals 16, 52–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Cooper, A.A. et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313, 324–328 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yeger-Lotem, E. et al. Nat. Genet. (in the press).

  14. Clark, I.E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, Y. et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. USA 103, 10793–10798 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, F., Nguyen, J.L., Hulleman, J.D., Li, L. & Rochet, J.C. Mechanisms of DJ-1 neuroprotection in a cellular model of Parkinson's disease. J. Neurochem. 105, 2435–2453 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Meulener, M.C. et al. DJ-1 is present in a large molecular complex in human brain tissue and interacts with alpha-synuclein. J. Neurochem. 93, 1524–1532 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Batelli, S. et al. DJ-1 modulates alpha-synuclein aggregation state in a cellular model of oxidative stress: relevance for Parkinson's disease and involvement of HSP70. PLoS ONE 3, e1884 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhou, W. & Freed, C.R. DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T alpha-synuclein toxicity. J. Biol. Chem. 280, 43150–43158 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Di Fonzo, A. et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68, 1557–1562 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Lees, A.J. & Singleton, A.B. Clinical heterogeneity of ATP13A2 linked disease (Kufor-Rakeb) justifies a PARK designation. Neurology 68, 1553–1554 (2007).

    Article  PubMed  Google Scholar 

  23. Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184–1191 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Gitler, A.D. et al. The Parkinson's disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc. Natl. Acad. Sci. USA 105, 145–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Soper, J.H. et al. α-Synuclein induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae. Mol. Biol. Cell 19, 1093–1103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427, 645–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Caldwell, G.A. et al. Suppression of polyglutamine-induced protein aggregation in Caenorhabditis elegans by torsin proteins. Hum. Mol. Genet. 12, 307–319 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Cohen, E., Bieschke, J., Perciavalle, R.M., Kelly, J.W. & Dillin, A. Opposing activities protect against age-onset proteotoxicity. Science 313, 1604–1610 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Link, C.D. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 92, 9368–9372 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Satyal, S.H. et al. Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 97, 5750–5755 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McLean, P.J. et al. TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J. Neurochem. 83, 846–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Sharma, N. et al. A close association of torsinA and alpha-synuclein in Lewy bodies: a fluorescence resonance energy transfer study. Am. J. Pathol. 159, 339–344 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Outeiro, T.F. et al. Sirtuin 2 inhibitors rescue α-Synuclein-mediated toxicity in models of Parkinson's disease. Science 317, 516–519 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Kuhlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 5, 282–295 (2004).

    Article  PubMed  Google Scholar 

  35. Axelsen, K.B. & Palmgren, M.G. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46, 84–101 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Gosavi, N., Lee, H.J., Lee, J.S., Patel, S. & Lee, S.J. Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. J. Biol. Chem. 277, 48984–48992 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Larsen, K.E. et al. Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J. Neurosci. 26, 11915–11922 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kubo, S. et al. A combinatorial code for the interaction of alpha-synuclein with membranes. J. Biol. Chem. 280, 31664–31672 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A. & Lansbury, P.T. Jr. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 35, 13709–13715 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Eliezer, D., Kutluay, E., Bussell, R. Jr. & Browne, G. Conformational properties of alpha-synuclein in its free and lipid-associated states. J. Mol. Biol. 307, 1061–1073 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Volles, M.J. & Lansbury, P.T. Jr. Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson's disease. Biochemistry 42, 7871–7878 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Forman, M.S., Trojanowski, J.Q. & Lee, V.M. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med. 10, 1055–1063 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Norris, E.H. et al. Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model. Am. J. Pathol. 170, 658–666 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dauer, W. et al. Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc. Natl. Acad. Sci. USA 99, 14524–14529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alberti, S., Gitler, A.D. & Lindquist, S. A suite of Gateway((R)) cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24, 913–919 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamath, R.S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Hamamichi, S. et al. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson's disease model. Proc. Natl. Acad. Sci. USA 105, 728–733 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Kubisch (University of Cologne) for providing the human ATP13A2 cDNA and to the Yeast Resource Center for plasmids. A.D.G. was a Lilly Fellow of the Life Sciences Research Foundation and is currently a Pew Scholar in the Biomedical Sciences. A.D.G. is also supported by the US National Institutes of Health Director's New Innovator Award Program, part of the NIH Roadmap for Medical Research, through grant number 1-DP2-OD004417-01. A.C. is supported by a postdoctoral fellowship from the Parkinson's Disease Foundation. S.L. acknowledges support from the MGH/MIT Morris Udall Center of Excellence in Parkinson Disease Research, NS038372, and the Howard Hughes Medical Institute. M.L.G. was supported by a grant from the National Parkinson Foundation. C. elegans studies in the Caldwell laboratory were supported in part by grants from the Michael J. Fox Foundation, American Parkinson Disease Foundation and Bachmann-Strauss Dystonia and Parkinson Foundation. Research in the Rochet laboratory was supported by National Institutes of Health Grant NS049221 and a grant from the American Parkinson Disease Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Lindquist.

Ethics declarations

Competing interests

S.L. is a founder of, a former member of the Board of Directors, and has received consulting fees from FoldRx Pharmaceuticals, a company that investigates drugs to treat protein folding diseases. A.D.G., A.A.C. and S.L. are inventors on patents and patent applications that have been licensed to FoldRx. S.L. is also a member of the Board of Directors of Johnson & Johnson. A.A.C. and J.-C. R. have received consulting fees from FoldRx Pharmaceuticals and J.-C.R. has received payment from FoldRx for testing drugs in his laboratory.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 2101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gitler, A., Chesi, A., Geddie, M. et al. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41, 308–315 (2009). https://doi.org/10.1038/ng.300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing