Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RNA polymerase V transcription guides ARGONAUTE4 to chromatin

Abstract

Retrotransposons and repetitive DNA elements in eukaryotes are silenced by small RNA–directed heterochromatin formation. In Arabidopsis, this process involves 24-nt siRNAs that bind to ARGONAUTE4 (AGO4) and facilitate the targeting of complementary loci1,2 via unknown mechanisms. Nuclear RNA polymerase V (Pol V) is an RNA silencing enzyme recently shown to generate noncoding transcripts at loci silenced by 24-nt siRNAs3. We show that AGO4 physically interacts with these Pol V transcripts and is thereby recruited to the corresponding chromatin. We further show that DEFECTIVE IN MERISTEM SILENCING3 (DMS3), a structural maintenance of chromosomes (SMC) hinge-domain protein4, functions in the assembly of Pol V transcription initiation or elongation complexes. Collectively, our data suggest that AGO4 is guided to target loci through base-pairing of associated siRNAs with nascent Pol V transcripts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pol V, AGO4 and DMS3 work nonredundantly in heterochromatin formation.
Figure 2: AGO4 is not required for Pol V transcription.
Figure 3: Pol V transcription is necessary for AGO4–chromatin interactions.
Figure 4: AGO4 physically interacts with Pol V transcripts.
Figure 5: The SMC hinge-domain protein DMS3 is required for Pol V transcription and detectable Pol V-chromatin interactions.
Figure 6: A model for Pol V and siRNA-dependent heterochromatin formation.

Similar content being viewed by others

References

  1. Chapman, E.J. & Carrington, J.C. Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet. 8, 884–896 (2007).

    Article  CAS  Google Scholar 

  2. Girard, A. & Hannon, G.J. Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol. 18, 136–148 (2008).

    Article  CAS  Google Scholar 

  3. Wierzbicki, A.T., Haag, J.R. & Pikaard, C.S. Noncoding transcription by RNA Polymerase Pol IVb/ Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135, 635–648 (2008).

    Article  CAS  Google Scholar 

  4. Kanno, T. et al. A structural-maintenance-of-chromosomes hinge domain-containing protein is required for RNA-directed DNA methylation. Nat. Genet. 40, 670–675 (2008).

    Article  CAS  Google Scholar 

  5. Vaucheret, H. Plant ARGONAUTES. Trends Plant Sci. 13, 350–358 (2008).

    Article  CAS  Google Scholar 

  6. Kanno, T. et al. A SNF2-like protein facilitates dynamic control of DNA methylation. EMBO Rep. 6, 649–655 (2005).

    Article  CAS  Google Scholar 

  7. Li, C.F. et al. An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell 126, 93–106 (2006).

    Article  CAS  Google Scholar 

  8. Pontes, O. et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126, 79–92 (2006).

    Article  CAS  Google Scholar 

  9. Pontier, D. et al. Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev. 19, 2030–2040 (2005).

    Article  CAS  Google Scholar 

  10. Kanno, T. et al. Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat. Genet. 37, 761–765 (2005).

    Article  CAS  Google Scholar 

  11. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, e104 (2004).

    Article  Google Scholar 

  12. Kasschau, K.D. et al. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol. 5, e57 (2007).

    Article  Google Scholar 

  13. Cao, X. et al. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol. 13, 2212–2217 (2003).

    Article  CAS  Google Scholar 

  14. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    Article  CAS  Google Scholar 

  15. Haag, J.R., Pontes, O. & Pikaard, C.S. Metal A and metal B sites of nuclear RNA polymerases Pol IV and Pol V are required for siRNA-dependent DNA methylation and gene silencing. PLoS ONE 4, e4110 (2009).

    Article  Google Scholar 

  16. Peric-Hupkes, D. & van Steensel, B. Linking cohesin to gene regulation. Cell 132, 925–928 (2008).

    Article  CAS  Google Scholar 

  17. El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 21, 2539–2544 (2007).

    Article  CAS  Google Scholar 

  18. Bühler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006).

    Article  Google Scholar 

  19. Bühler, M. & Moazed, D. Transcription and RNAi in heterochromatic gene silencing. Nat. Struct. Mol. Biol. 14, 1041–1048 (2007).

    Article  Google Scholar 

  20. Onodera, Y. et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120, 613–622 (2005).

    Article  CAS  Google Scholar 

  21. Peters, A.H.F.M. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our work is supported by US National Institutes of Health grant GM077590. The content of the paper is the sole responsibility of the authors and does not necessarily reflect the views of the NIH. We thank T. Blevins (Washington University, St. Louis), S. Jacobsen (University of California, Los Angeles) and T. Jenuwein (Max Planck Institute of Immunobiology) for providing reagents.

Author information

Authors and Affiliations

Authors

Contributions

T.S.R. generated anti-AGO4; J.R.H. and T.S.R. assayed NRPE1–AGO4 interactions; J.R.H. produced Figure 4d; A.T.W. performed all remaining experiments. A.T.W. and C.S.P. wrote the manuscript.

Corresponding author

Correspondence to Craig S Pikaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wierzbicki, A., Ream, T., Haag, J. et al. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet 41, 630–634 (2009). https://doi.org/10.1038/ng.365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing