Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis

Abstract

Although many vertebrate organs, such as kidneys, lungs and liver, are composed of epithelial tubules, little is known of the mechanisms that establish the length or diameter of these tubules. In the kidney, defects in the establishment or maintenance of tubule diameter are associated with one of the most common inherited human disorders, polycystic kidney disease. Here we show that attenuation of Wnt9b signaling during kidney morphogenesis affects the planar cell polarity of the epithelium and leads to tubules with significantly increased diameter. Although previous studies showed that polarized cell divisions maintain the diameter of postnatal kidney tubules, we find that cell divisions are randomly oriented during embryonic development. Our data suggest that diameter is established during early morphogenetic stages by convergent extension processes and maintained by polarized cell divisions. Wnt9b, signaling through the non-canonical Rho/Jnk branch of the Wnt pathway, is necessary for both of these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defects in Wnt9b signaling results in cyst formation.
Figure 2: Characterization of cyst origin in Wnt9bneo/neo kidneys.
Figure 3: Cell division becomes oriented after birth in a Wnt9b-dependent process.
Figure 4: Wnt9b is required for the elongation and narrowing of kidney tubules.
Figure 5: Wnt9b is necessary for the orientation of polarized cells perpendicular to the axis of extension.
Figure 6: Wnt9b signals through the noncanonical pathway to regulate tubule diameter.

Similar content being viewed by others

References

  1. Schedl, A. Renal abnormalities and their developmental origin. Nat. Rev. Genet. 8, 791–802 (2007).

    Article  CAS  Google Scholar 

  2. Torres, V.E., Harris, P.C. & Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet 369, 1287–1301 (2007).

    Article  Google Scholar 

  3. Ibraghimov-Beskrovnaya, O. Targeting dysregulated cell cycle and apoptosis for polycystic kidney disease therapy. Cell Cycle 6, 776–779 (2007).

    Article  CAS  Google Scholar 

  4. Araujo, S.J., Aslam, H., Tear, G. & Casanova, J. mummy/cystic encodes an enzyme required for chitin and glycan synthesis, involved in trachea, embryonic cuticle and CNS development—analysis of its role in Drosophila tracheal morphogenesis. Dev. Biol. 288, 179–193 (2005).

    Article  CAS  Google Scholar 

  5. Jayaram, S.A. et al. COPI vesicle transport is a common requirement for tube expansion in Drosophila. PLoS ONE 3, e1964 (2008).

    Article  Google Scholar 

  6. Tsarouhas, V. et al. Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Dev. Cell 13, 214–225 (2007).

    Article  CAS  Google Scholar 

  7. Wang, S. et al. Septate-junction-dependent luminal deposition of chitin deacetylases restricts tube elongation in the Drosophila trachea. Curr. Biol. 16, 180–185 (2006).

    Article  Google Scholar 

  8. Hemphala, J., Uv, A., Cantera, R., Bray, S. & Samakovlis, C. Grainy head controls apical membrane growth and tube elongation in response to Branchless/FGF signalling. Development 130, 249–258 (2003).

    Article  CAS  Google Scholar 

  9. Jung, A.C., Ribeiro, C., Michaut, L., Certa, U. & Affolter, M. Polychaetoid/ZO-1 is required for cell specification and rearrangement during Drosophila tracheal morphogenesis. Curr. Biol. 16, 1224–1231 (2006).

    Article  CAS  Google Scholar 

  10. Luschnig, S., Batz, T., Armbruster, K. & Krasnow, M.A. serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr. Biol. 16, 186–194 (2006).

    Article  CAS  Google Scholar 

  11. Lubarsky, B. & Krasnow, M.A. Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28 (2003).

    Article  CAS  Google Scholar 

  12. Nishimura, M., Inoue, Y. & Hayashi, S. A wave of EGFR signaling determines cell alignment and intercalation in the Drosophila tracheal placode. Development 134, 4273–4282 (2007).

    Article  CAS  Google Scholar 

  13. Paul, S.M., Palladino, M.J. & Beitel, G.J. A pump-independent function of the Na,K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 134, 147–155 (2007).

    Article  CAS  Google Scholar 

  14. Wu, V.M. & Beitel, G.J. A junctional problem of apical proportions: epithelial tube-size control by septate junctions in the Drosophila tracheal system. Curr. Opin. Cell Biol. 16, 493–499 (2004).

    Article  CAS  Google Scholar 

  15. Tong, X. & Buechner, M. CRIP homologues maintain apical cytoskeleton to regulate tubule size in C. elegans. Dev. Biol. 317, 225–233 (2008).

    Article  CAS  Google Scholar 

  16. Merkel, C.E., Karner, C.M. & Carroll, T.J. Molecular regulation of kidney development: is the answer blowing in the Wnt? Pediatr. Nephrol. 22, 1825–1838 (2007).

    Article  Google Scholar 

  17. Carroll, T.J., Park, J.S., Hayashi, S., Majumdar, A. & McMahon, A.P. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell 9, 283–292 (2005).

    Article  CAS  Google Scholar 

  18. Park, J.S., Valerius, M.T. & McMahon, A.P. Wnt/β-catenin signaling regulates nephron induction during mouse kidney development. Development 134, 2533–2539 (2007).

    Article  CAS  Google Scholar 

  19. Saadi-Kheddouci, S. et al. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the β-catenin gene. Oncogene 20, 5972–5981 (2001).

    Article  CAS  Google Scholar 

  20. Benzing, T., Simons, M. & Walz, G. Wnt signaling in polycystic kidney disease. J. Am. Soc. Nephrol. 18, 1389–1398 (2007).

    Article  CAS  Google Scholar 

  21. Fischer, E. et al. Defective planar cell polarity in polycystic kidney disease. Nat. Genet. 38, 21–23 (2006).

    Article  CAS  Google Scholar 

  22. Karner, C., Wharton, K.A. Jr. & Carroll, T.J. Planar cell polarity and vertebrate organogenesis. Semin. Cell Dev. Biol. 17, 194–203 (2006).

    Article  Google Scholar 

  23. Klingensmith, J., Nusse, R. & Perrimon, N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev. 8, 118–130 (1994).

    Article  CAS  Google Scholar 

  24. Vinson, C.R., Conover, S. & Adler, P.N. A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338, 263–264 (1989).

    Article  CAS  Google Scholar 

  25. Goldstein, B., Takeshita, H., Mizumoto, K. & Sawa, H. Wnt signals can function as positional cues in establishing cell polarity. Dev. Cell 10, 391–396 (2006).

    Article  CAS  Google Scholar 

  26. Heisenberg, C.P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81 (2000).

    Article  CAS  Google Scholar 

  27. Tada, M. & Smith, J.C. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127, 2227–2238 (2000).

    CAS  PubMed  Google Scholar 

  28. Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530 (2000).

    Article  CAS  Google Scholar 

  29. Shao, X., Somlo, S. & Igarashi, P. Epithelial-specific Cre/lox recombination in the developing kidney and genitourinary tract. J. Am. Soc. Nephrol. 13, 1837–1846 (2002).

    Article  CAS  Google Scholar 

  30. Thomson, R.B. & Aronson, P.S. Immunolocalization of Ksp-cadherin in the adult and developing rabbit kidney. Am. J. Physiol. 277, F146–F156 (1999).

    CAS  PubMed  Google Scholar 

  31. Hayashi, S. & McMahon, A.P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002).

    Article  CAS  Google Scholar 

  32. Jonassen, J.A., San Agustin, J., Follit, J.A. & Pazour, G.J. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J. Cell Biol. 183, 377–384 (2008).

    Article  CAS  Google Scholar 

  33. Patel, V. et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum. Mol. Genet. 17, 1578–1590 (2008).

    Article  CAS  Google Scholar 

  34. Saburi, S. et al. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat. Genet. 40, 1010–1015 (2008).

    Article  CAS  Google Scholar 

  35. Gong, Y., Mo, C. & Fraser, S.E. Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430, 689–693 (2004).

    Article  CAS  Google Scholar 

  36. da Silva, S.M. & Vincent, J.P. Oriented cell divisions in the extending germband of Drosophila. Development 134, 3049–3054 (2007).

    Article  Google Scholar 

  37. Zeng, G. et al. Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 109, 1345–1352 (2007).

    Article  CAS  Google Scholar 

  38. Wang, J. et al. Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nat. Genet. 37, 980–985 (2005).

    Article  CAS  Google Scholar 

  39. Wallingford, J.B., Vogeli, K.M. & Harland, R.M. Regulation of convergent extension in Xenopus by Wnt5a and Frizzled-8 is independent of the canonical Wnt pathway. Int. J. Dev. Biol. 45, 225–227 (2001).

    CAS  PubMed  Google Scholar 

  40. Torban, E., Wang, H.J., Groulx, N. & Gros, P. Independent mutations in mouse Vangl2 that cause neural tube defects in looptail mice impair interaction with members of the Dishevelled family. J. Biol. Chem. 279, 52703–52713 (2004).

    Article  CAS  Google Scholar 

  41. Djiane, A., Riou, J., Umbhauer, M., Boucaut, J. & Shi, D. Role of frizzled 7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 127, 3091–3100 (2000).

    CAS  PubMed  Google Scholar 

  42. Goto, T., Davidson, L., Asashima, M. & Keller, R. Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr. Biol. 15, 787–793 (2005).

    Article  CAS  Google Scholar 

  43. Goto, T. & Keller, R. The planar cell polarity gene strabismus regulates convergence and extension and neural fold closure in Xenopus. Dev. Biol. 247, 165–181 (2002).

    Article  CAS  Google Scholar 

  44. Marlow, F., Topczewski, J., Sepich, D. & Solnica-Krezel, L. Zebrafish Rho kinase 2 acts downstream of Wnt11 to mediate cell polarity and effective convergence and extension movements. Curr. Biol. 12, 876–884 (2002).

    Article  CAS  Google Scholar 

  45. Concha, M.L. & Adams, R.J. Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: a time-lapse analysis. Development 125, 983–994 (1998).

    CAS  PubMed  Google Scholar 

  46. Wallingford, J.B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  Google Scholar 

  47. Shih, J. & Keller, R. Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116, 901–914 (1992).

    CAS  PubMed  Google Scholar 

  48. Habas, R., Dawid, I.B. & He, X. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 17, 295–309 (2003).

    Article  CAS  Google Scholar 

  49. Strutt, D.I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling. Nature 387, 292–295 (1997).

    Article  CAS  Google Scholar 

  50. Boutros, M., Paricio, N., Strutt, D.I. & Mlodzik, M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94, 109–118 (1998).

    Article  CAS  Google Scholar 

  51. Michael, L., Sweeney, D.E. & Davies, J.A. A role for microfilament-based contraction in branching morphogenesis of the ureteric bud. Kidney Int. 68, 2010–2018 (2005).

    Article  CAS  Google Scholar 

  52. Meyer, T.N. et al. Rho kinase acts at separate steps in ureteric bud and metanephric mesenchyme morphogenesis during kidney development. Differentiation 74, 638–647 (2006).

    Article  CAS  Google Scholar 

  53. Yoder, B.K. et al. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am. J. Physiol. Renal Physiol. 282, F541–F552 (2002).

    Article  CAS  Google Scholar 

  54. Yoder, B.K., Hou, X. & Guay-Woodford, L.M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    Article  CAS  Google Scholar 

  55. Watanabe, D. et al. The left-right determinant Inversin is a component of node monocilia and other 9+0 cilia. Development 130, 1725–1734 (2003).

    Article  CAS  Google Scholar 

  56. Ward, C.J. et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum. Mol. Genet. 12, 2703–2710 (2003).

    Article  CAS  Google Scholar 

  57. Sun, Z. et al. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131, 4085–4093 (2004).

    Article  CAS  Google Scholar 

  58. Baker, S.A., Freeman, K., Luby-Phelps, K., Pazour, G.J. & Besharse, J.C. IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. J. Biol. Chem. 278, 34211–34218 (2003).

    Article  CAS  Google Scholar 

  59. Pazour, G.J., San Agustin, J.T., Follit, J.A., Rosenbaum, J.L. & Witman, G.B. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 12, R378–R380 (2002).

    Article  CAS  Google Scholar 

  60. Otto, E.A. et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat. Genet. 34, 413–420 (2003).

    Article  CAS  Google Scholar 

  61. Nauli, S.M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    Article  CAS  Google Scholar 

  62. Menezes, L.F. et al. Polyductin, the PKHD1 gene product, comprises isoforms expressed in plasma membrane, primary cilium, and cytoplasm. Kidney Int. 66, 1345–1355 (2004).

    Article  CAS  Google Scholar 

  63. Hou, X. et al. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J. Clin. Invest. 109, 533–540 (2002).

    Article  CAS  Google Scholar 

  64. Lin, F. et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl. Acad. Sci. USA 100, 5286–5291 (2003).

    Article  CAS  Google Scholar 

  65. Corbit, K.C. et al. Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol. 10, 70–76 (2008).

    Article  CAS  Google Scholar 

  66. Gerdes, J.M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat. Genet. 39, 1350–1360 (2007).

    Article  CAS  Google Scholar 

  67. Lu, W. et al. Perinatal lethality with kidney and pancreas defects in mice with a targeted Pkd1 mutation. Nat. Genet. 17, 179–181 (1997).

    Article  CAS  Google Scholar 

  68. Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 (2005).

    Article  CAS  Google Scholar 

  69. Yu, J. et al. A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136, 161–171 (2009).

    Article  CAS  Google Scholar 

  70. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18, 5931–5942 (1999).

    Article  CAS  Google Scholar 

  71. Marose, T.D., Merkel, C.E., McMahon, A.P. & Carroll, T.J. β-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev. Biol. 314, 112–126 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Cleaver for reading and commenting on this manuscript, L. Avery for help with statistical analysis, J. Zhou (Brigham and Women's and Harvard Medical School) for providing us with antibodies to Pc-1 and Pc-2 and the Pkd1 mutant kidneys, M. Taketo (Kyoto University) for providing the beta-catenin exon 3 flox mice, O. Cabello (J.H. Quillen College of Medicine, East Tennessee State University) for providing us with the Invs mutant kidneys, B. Adams, E. Small, J. Shelton and the Molecular Pathology Core for technical assistance and L. James and M. Princena for the urine albumin studies. This work was supported by grants from the American Society for Nephrology, the American Heart Association (0730236N), the Polycystic Kidney Disease Research Foundation, the UAB ARPKD Center (5P30DK07403802) and the US National Institutes of Health (1R01DK080004) to T.J.C. The work was also supported by the University of Texas Southwestern O'Brien Kidney Research Core Center (NIH P30DK079328). J.B.W. was supported by grants from the National Institute for General Medical Sciences, the March of Dimes and the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Contributions

C.M.K. designed experiments, performed experiments, assembled data and wrote the manuscript, R.C. performed biochemistry, S.A. assisted with quantitative analysis on Wnt9bneo/neo kidneys, P.I. provided KspCre mice and commented on manuscript, J.B.W. assisted with cell orientation analysis and T.J.C. performed initial experiments, designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Thomas J Carroll.

Supplementary information

Supplementary Text and Figures

Supplementary Note and Supplementary Figures 1–7 (PDF 9389 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karner, C., Chirumamilla, R., Aoki, S. et al. Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41, 793–799 (2009). https://doi.org/10.1038/ng.400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.400

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing