Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of Atr and Trp53

Abstract

Trp53 loss of function has previously been shown to rescue tissue maintenance and developmental defects resulting from DNA damage or DNA-repair gene mutations1,2,3,4,5,6,7,8,9,10,11,12. Here, we report that p53 deficiency severely exacerbates tissue degeneration caused by mosaic deletion of the essential genome maintenance regulator Atr. Combined loss of Atr and p53 (Trp53−/−AtrmKO) led to severe defects in hair follicle regeneration, localized inflammation (Mac1+Gr1+ infiltrates), accelerated deterioration of the intestinal epithelium and synthetic lethality in adult mice. Tissue degeneration in Trp53−/−AtrmKO mice was characterized by the accumulation of cells maintaining high levels of DNA damage. Moreover, the elevated frequency of these damaged cells in both progenitor and downstream compartments in Trp53−/−AtrmKO skin coincided with delayed compensatory tissue renewal from residual ATR-expressing cells. Together, our results indicate that the combined loss of Atr and Trp53 in adult mice leads to the accumulation of highly damaged cells, which, consequently, impose a barrier to regeneration from undamaged progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mosaic Atr deletion in adult mice is synthetic lethal with Trp53 deficiency.
Figure 2: Accumulation of damaged cells in the bone marrow and intestines of Trp53−/−AtrmKO mice.
Figure 3: Trp53 deficiency markedly delays hair follicle regeneration following localized Atr deletion in the skin and leads to acute inflammation.
Figure 4: Trp53−/−AtrmKO skin is characterized by the persistent accumulation of γH2AX-positive cells.
Figure 5: p53 is required for efficient compensatory renewal after Atr deletion.

Similar content being viewed by others

References

  1. Wlodarski, P. et al. Role of p53 in hematopoietic recovery after cytotoxic treatment. Blood 91, 2998–3006 (1998).

    CAS  PubMed  Google Scholar 

  2. Bender, C.F. et al. Cancer predisposition and hematopoietic failure in Rad50(S/S) mice. Genes Dev. 16, 2237–2251 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Frank, K.M. et al. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol. Cell 5, 993–1002 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404, 897–900 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Hakem, R., de la Pompa, J.L., Elia, A., Potter, J. & Mak, T.W. Partial rescue of Brca1 (5–6) early embryonic lethality by p53 or p21 null mutation. Nat. Genet. 16, 298–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Lim, D.S. & Hasty, P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol. 16, 7133–7143 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lim, D.S. et al. Analysis of ku80-mutant mice and cells with deficient levels of p53. Mol. Cell. Biol. 20, 3772–3780 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu, Y., Yang, E.M., Brugarolas, J., Jacks, T. & Baltimore, D. Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm−/− mice. Mol. Cell. Biol. 18, 4385–4390 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, X. et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat. Genet. 28, 266–271 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Botchkarev, V.A. et al. p53 is essential for chemotherapy-induced hair loss. Cancer Res. 60, 5002–5006 (2000).

    CAS  PubMed  Google Scholar 

  12. Orii, K.E., Lee, Y., Kondo, N. & McKinnon, P.J. Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc. Natl. Acad. Sci. USA 103, 10017–10022 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tyner, S.D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Maier, B. et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18, 306–319 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matheu, A. et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448, 375–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Serrano, M. & Blasco, M.A. Cancer and ageing: convergent and divergent mechanisms. Nat. Rev. Mol. Cell Biol. 8, 715–722 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. García-Cao, I. et al. Increased p53 activity does not accelerate telomere-driven ageing. EMBO Rep. 7, 546–552 (2006).

    PubMed  PubMed Central  Google Scholar 

  18. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown, E.J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown, E.J. & Baltimore, D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev. 17, 615–628 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chanoux, R.A. et al. ATR and H2AX Cooperate in Maintaining Genome Stability under Replication Stress. J. Biol. Chem. 284, 5994–6003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paulsen, R.D. & Cimprich, K.A. The ATR pathway: fine-tuning the fork. DNA Repair (Amst.) 6, 953–966 (2007).

    Article  CAS  Google Scholar 

  23. Ruzankina, Y. et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1, 113–126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, B.B. & Bartek, J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat. Rev. Cancer 4, 216–225 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Nghiem, P., Park, P.K., Kim, Y., Vaziri, C. & Schreiber, S.L. ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc. Natl. Acad. Sci. USA 98, 9092–9097 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nghiem, P., Park, P.K., Kim Ys, Y.S., Desai, B.N. & Schreiber, S.L. ATR is not required for p53 activation but synergizes with p53 in the replication checkpoint. J. Biol. Chem. 277, 4428–4434 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Morris, R.J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411–417 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Greco, V. et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155–169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Coppé, J.P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  PubMed  Google Scholar 

  31. Kuilman, T. & Peeper, D.S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11, 973–9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cortez, D., Guntuku, S., Qin, J. & Elledge, S.J. ATR and ATRIP: partners in checkpoint signaling. Science 294, 1713–1716 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to G. Beatty, K. Cimprich, G. Cotsarelis and A. Bhandoola for reagents, protocols and helpful advice, and J. Wang and other members of the AFCRI Histology Core for tissue processing. These studies were supported by the US National Institute on Aging (R01AG027376 and F30AG034027) and the Abramson Family Cancer Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

Y.R., D.W.S. and E.J.B. designed and interpreted the experiments and wrote the manuscript. Y.R. and D.W.S. performed all of the experiments, with assistance from A.A. (mouse maintenance, qPCR and histological analysis) and C.E.C. and R.H.V. (quantification of Gr1+Mac1+ cell infiltration).

Corresponding author

Correspondence to Eric J Brown.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 1979 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruzankina, Y., Schoppy, D., Asare, A. et al. Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of Atr and Trp53. Nat Genet 41, 1144–1149 (2009). https://doi.org/10.1038/ng.441

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.441

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing