Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks

Abstract

Epistasis refers to the interaction between genes. Although high-throughput epistasis data from model organisms are being generated and used to construct genetic networks1,2,3, the extent to which genetic epistasis reflects biologically meaningful interactions remains unclear4,5,6. We have addressed this question through in silico mapping of positive and negative epistatic interactions amongst biochemical reactions within the metabolic networks of Escherichia coli and Saccharomyces cerevisiae using flux balance analysis. We found that negative epistasis occurs mainly between nonessential reactions with overlapping functions, whereas positive epistasis usually involves essential reactions, is highly abundant and, unexpectedly, often occurs between reactions without overlapping functions. We offer mechanistic explanations of these findings and experimentally validate them for 61 S. cerevisiae gene pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functions of E. coli metabolic reactions in glucose minimal medium.
Figure 2: Pairwise epistasis and functional association among 255 important reactions in E. coli.
Figure 3: Pairwise epistasis and functional association among 212 important reactions in yeast.
Figure 4: Epistasis (ε) and scaled epistasis (ε̃) among 17 yeast genes.

Similar content being viewed by others

References

  1. Tischler, J., Lehner, B. & Fraser, A.G. Evolutionary plasticity of genetic interaction networks. Nat. Genet. 40, 390–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Boone, C., Bussey, H. & Andrews, B.J. Exploring genetic interactions and networks with yeast. Nat. Rev. Genet. 8, 437–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Roguev, A. et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405–410 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moore, J.H. & Williams, S.M. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 27, 637–646 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Cordell, H.J. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum. Mol. Genet. 11, 2463–2468 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Phillips, P.C. Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9, 855–867 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bateson, W. Mendel's Principles of Heredity (Cambridge University Press, Cambridge, UK, 1909).

  8. Fisher, R.A. The correlations between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1918).

    Article  Google Scholar 

  9. Hartman, J.L., Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science 291, 1001–1004 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Coyne, J.A. Genetics and speciation. Nature 355, 511–515 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Kondrashov, A.S. Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–440 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Barton, N.H. & Charlesworth, B. Why sex and recombination? Science 281, 1986–1990 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kondrashov, A.S. & Crow, J.F. Haploidy or diploidy: which is better? Nature 351, 314–315 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Crow, J.F. & Kimura, M. Efficiency of truncation selection. Proc. Natl. Acad. Sci. USA 76, 396–399 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jasnos, L. & Korona, R. Epistatic buffering of fitness loss in yeast double deletion strains. Nat. Genet. 39, 550–554 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Yeh, P., Tschumi, A.I. & Kishony, R. Functional classification of drugs by properties of their pairwise interactions. Nat. Genet. 38, 489–494 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Segrè, D., Deluna, A., Church, G.M. & Kishony, R. Modular epistasis in yeast metabolism. Nat. Genet. 37, 77–83 (2005).

    Article  PubMed  Google Scholar 

  18. Price, N.D., Reed, J.L. & Palsson, B.O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Papp, B., Pal, C. & Hurst, L.D. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Ibarra, R.U., Edwards, J.S. & Palsson, B.O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Harrison, R., Papp, B., Pal, C., Oliver, S.G. & Delneri, D. Plasticity of genetic interactions in metabolic networks of yeast. Proc. Natl. Acad. Sci. USA 104, 2307–2312 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deutscher, D., Meilijson, I., Kupiec, M. & Ruppin, E. Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat. Genet. 38, 993–998 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Edwards, J.S., Ibarra, R.U. & Palsson, B.O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Reed, J.L., Vo, T.D., Schilling, C.H. & Palsson, B.O. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4, R54 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Szathmáry, E. Do deleterious mutations act synergistically? Metabolic control theory provides a partial answer. Genetics 133, 127–132 (1993).

    PubMed  PubMed Central  Google Scholar 

  26. Deutschbauer, A.M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kishony, R. & Leibler, S. Environmental stresses can alleviate the average deleterious effect of mutations. J. Biol. 2, 14 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Breslow, D.K. et al. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat. Methods 5, 711–718 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elena, S.F. & Lenski, R.E. Test of synergistic interactions among deleterious mutations in bacteria. Nature 390, 395–398 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Liao, B.Y. & Zhang, J. Mouse duplicate genes are as essential as singletons. Trends Genet. 23, 378–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Segrè, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mo, M.L., Palsson, B.O. & Herrgard, M.J. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3, 37 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kacser, H. & Burns, J.A. The molecular basis of dominance. Genetics 97, 639–666 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Brachmann, C.B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Amberg, D.C., Burke, D.J. & Strathern, J.N. Methods in Yeast Genetics. A Cold Spring Harbor Laboratory Course Manual 59–76 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2005).

  36. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Mumberg, D., Muller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Steinmetz, L.M. et al. Systematic screen for human disease genes in yeast. Nat. Genet. 31, 400–404 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Nagalakshmi, U. et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ekino, K., Kwon, I., Goto, M., Yoshino, S. & Furukawa, K. Functional analysis of HO gene in delayed homothallism in Saccharomyces cerevisiae wy2. Yeast 15, 451–458 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Meiron, H., Nahon, E. & Raveh, D. Identification of the heterothallic mutation in HO-endonuclease of S. cerevisiae using HO/ho chimeric genes. Curr. Genet. 28, 367–373 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Bharucha, G. Kalay, A. Kumar, J. Ma and B. Williams for advice and assistance in yeast experiments, B. Palsson and his group for instruction on FBA, B.-Y. Liao for drawing Supplementary Figure 2 and M. Bakewell, S. Cho, W. Grus, B.-Y. Liao, and C. Maclean for valuable comments. This work was supported by research grants from the US National Institutes of Health and University of Michigan Center for Computational Medicine and Biology to J.Z.

Author information

Authors and Affiliations

Authors

Contributions

X.H. and J.Z. conceived the research; X.H., Z.W., W.Q. and J.Z. designed the experiments; X.H., W.Q., Z.W., Y.L. and J.Z. conducted the experiments; X.H., W.Q., Z.W. and J.Z. analyzed the data; X.H. and J.Z. drafted the manuscript and all authors contributed to the final manuscript writing and its revisions.

Corresponding author

Correspondence to Jianzhi Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–5 and Supplementary Note (PDF 3352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Qian, W., Wang, Z. et al. Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks. Nat Genet 42, 272–276 (2010). https://doi.org/10.1038/ng.524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing