Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Alzheimer's Aβ peptide induces neurodegeneration and apoptotic cell death in transgenic mice

Abstract

To test whether the hypothesis that the Alzheimer's Aβ peptide is neurotoxic, we introduced a transgene into mice to direct expression of this peptide to neurons. We show that the transgene is expressed in brain regions which are severely affected in Alzheimer's disease resulting in extensive neuronal degeneration. Morphological and biochemical evidence indicates that the eventual death of these cells occurs by apoptosis. Coincident with the cell degeneration and cell death is the presence of a striking reactive gliosis. Over 50% of the transgenic mice die by 12 months of age, half the normal life span of control mice. These data show that Aβ is neurotoxic in vivo and suggest that apoptosis may be responsible for the accompanying neuronal loss, the principal underlying cellular feature of Alzheimer's disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Selkoe, D.J. Normal and abnormal biology of the beta-amyloid precursor protein. A. Rev. Neurosci. 17, 489–517 (1994).

    Article  CAS  Google Scholar 

  2. Price, D.L., Borchelt, D.R. & Sisodia, S.S. Alzheimer disease and the prion disorders amyloid β-protein and prion protein amyloidoses. Proc. natn. Acad. Sci. U.S.A. 90, 6381–6384 (1993).

    Article  CAS  Google Scholar 

  3. Glenner, G.G. & Wong, C.W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  Google Scholar 

  4. Masters, C.L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. natn. Acad. Sci. U.S.A. 82, 4245–4249 (1985).

    Article  CAS  Google Scholar 

  5. Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    Article  CAS  Google Scholar 

  6. Ponte, P. et al. A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331, 525–527 (1988).

    Article  CAS  Google Scholar 

  7. Tanzi, R.E. et al. Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer's disease. Nature 331, 528–530 (1988).

    Article  CAS  Google Scholar 

  8. Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).

    Article  CAS  Google Scholar 

  9. Shoji, M. et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126–129 (1992).

    Article  CAS  Google Scholar 

  10. Busciglio, J., Gabuzda, D.H., Matsudaira, P. & Yankner, B.A. Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. natn. Acad. Sci. U.S.A. 90, 2092–2096 (1993).

    Article  CAS  Google Scholar 

  11. Seubert, P. et al. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature 359, 325–327 (1992).

    Article  CAS  Google Scholar 

  12. Citron, M. et al. Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production. Nature 360, 672–674 (1992).

    Article  CAS  Google Scholar 

  13. Cai, X.-D., Golde, T.E. & Younkin, S.G. Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259, 514–516 (1993).

    Article  CAS  Google Scholar 

  14. Cotman, C.W., Pike, C.J. & Copani, A. β-amyloid neurotoxicity: a discussion of in vitro findings. Neurobiol. Aging 13, 587–590 (1992).

    Article  CAS  Google Scholar 

  15. Price, D.L., Borocheit, D.R., Walker, L.C. & Sisodia, S.S. Toxicity of synthetic Aβ peptides and modeling of Alzheimer's disease. Neurobiol. Aging 13, 623–625 (1992).

    Article  CAS  Google Scholar 

  16. Wirak, D.O. et al. Deposits of amyloid β protein in the central nervous system of transgenic mice. Science 253, 323–325 (1991).

    Article  CAS  Google Scholar 

  17. Jucker, M. et al. Age-associated inclusions in normal and transgenic mouse brain. Science 255, 1443–1445 (1992).

    Article  CAS  Google Scholar 

  18. Wirak, D.O. et al. Age-associated inclusions in normal and transgenic mouse brain. Science 255, 1445 (1992).

    Article  CAS  Google Scholar 

  19. Kawabata, S., Higgins, G.A. & Gordon, J.W. Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein. Nature 354, 476–478 (1991).

    Article  CAS  Google Scholar 

  20. Sandhu, F.A., Salim, M. & Zain, S.B. Expression of the human β-amyloid protein of Alzheimer's disease specifically in the brains of transgenic mice. J. biol. Chem. 266, 21331–21334 (1991).

    CAS  PubMed  Google Scholar 

  21. Kawabata, S., Higgins, G.A. & Gordon, J.W. Alzheimer's retraction. Nature 356, 23 (1992).

    Article  CAS  Google Scholar 

  22. Kammesheidt, A. et al. Deposition of β/A4 immunoreactivity and neuronal pathology in transgenic mice expressing the carboxyl-terminal fragment of the Alzheimer amyloid precursor in the brain. Proc. natn. Acad. Sci. U.S.A. 89, 10857–10861 (1992).

    Article  CAS  Google Scholar 

  23. Quon, D. et al. Formation of β-amyloid protein deposits in brains of transgenic mice. Nature 352, 239–241 (1991).

    Article  CAS  Google Scholar 

  24. Yamaguchi, F. et al. Transgenic mice for the amyloid precursor protein 695 isoform have impaired spatial memory. NeuroReport 2, 781–784 (1991).

    Article  CAS  Google Scholar 

  25. Lamb, B.T. et al. Introduction and expression of the 400 kilobase precursor amyloid protein gene in transgenic mice. Nature Genet. 5, 22–30 (1993).

    Article  CAS  Google Scholar 

  26. Pearson, B. & Choi, T. Expression of the human β-amyloid precursor protein gene from a yeast artificial chromosome in transgenic mice. Proc. natn. Acad. Sci. U.S.A. 90, 10578–10582 (1993).

    Article  CAS  Google Scholar 

  27. Wertkin, A.M. et al. Human neurons derived from a teratocarcinoma cell line express solely the 695-amino acid amyloid precursor protein and produce intracellular β-amyloid or A4 peptides. Proc. natn. Acad. Sci. U.S.A. 90, 9513–9517 (1993).

    Article  CAS  Google Scholar 

  28. Grundke-Iqbal, I. et al. Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc. natn. Acad. Sci. U.S.A. 86, 2853–2857 (1989).

    Article  CAS  Google Scholar 

  29. Perry, G., Cras, P., Siedlak, S.L., Tabaton, M. & Kawai, M. β protein immunoreactivity is found in the majority of neurofibrillary tangles of Alzheimer's disease. Am. J. Path. 140, 283–290 (1992).

    CAS  PubMed  Google Scholar 

  30. Murphy, G.M. et al. Development of a monoclonal antibody specific for the COOH-terminal of β-amyloid 1-42 and its immunohistochemical reactivity in Alzheimer's disease and related disorders. Am. J. Path. 144, 1082–1088 (1994).

    CAS  PubMed  Google Scholar 

  31. Maruyama, K., Terakado, K., Usami, M. & Yoshikawa, K. Formation of amyloid-like fibrils in COS cells overexpressing part of the Alzheimer amyloid protein precursor. Nature 347, 566–569 (1990).

    Article  CAS  Google Scholar 

  32. Hayashi, Y., Kashiwagi, K. & Yoshikawa, K. Protease inhibitors generate cytotoxic fragments from Alzheimer amyloid protein precursor in cDNA-transfected glioma cells. Biochem. Biophys. Res. Commun. 187, 1249–1255 (1992).

    Article  CAS  Google Scholar 

  33. Yoshikawa, K., Aizawa, T. & Hayashi, Y. Degeneration in vitro of post-mitotic neurons overexpressing the Alzheimer amyloid protein precursor. Nature 359, 64–67 (1992).

    Article  CAS  Google Scholar 

  34. Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C.L. & Beyreuther, K. Human and rodent sequence analogs of Alzheimer's amyloid βA4 share similar properties and can be solubilized in buffers of pH 7.4. Eur. J. Biochem. 201, 61–69 (1991).

    Article  CAS  Google Scholar 

  35. Fraser, P.E. et al. Fibril formation by primate, rodent, and Dutch-hemorrhagic analogues of Alzheimer Amyloid β-protein. Biochemistry 31, 10716–10723 (1992).

    Article  CAS  Google Scholar 

  36. Julien, J.-P., Meyer, D., Flavell, D., Hurst, J. & Grosveld, F. Cloning and developmental expression of the murine neurofilament gene family. Molec. Brain Res. 1, 243–250 (1986).

    Article  CAS  Google Scholar 

  37. Hinrichs, S.H., Nerenberg, M., Reynolds, R.K., Khoury, G. & Jay, G. A transgenic mouse model for human neurofibromatosis. Science 237, 1340–1343 (1987).

    Article  CAS  Google Scholar 

  38. Vogel, J., Hinrichs, S.H., Reynolds, R.K., Luciw, P.A. & Jay, G. The HIV tat gene induces dermal lesions resembling Kaposi's sarcoma in transgenic mice. Nature 335, 606–611 (1988).

    Article  CAS  Google Scholar 

  39. Green, J.E., Hinrichs, S.H., Vogel, J. & Jay, G. Exocrinopathy resembling Sjögren's syndrome in HTLV-1 tax transgenic mice. Nature 341, 72–74 (1989).

    Article  CAS  Google Scholar 

  40. Kim, C.-M., Koike, K., Saito, I., Miyamura, T. & Jay, G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351, 317–320 (1991).

    Article  CAS  Google Scholar 

  41. CDC. Mortality from Alzheimer disease-United States, 1979–1987. MMWR Morb. Mortal. Wkty. Rep. 39, 785–788 (1990).

  42. Farlow, M. et al. Clinical characteristics in a kindred with early-onset Alzheimer's disease and their linkage to a G→T change at position 2149 of the amyloid precursor protein gene. Neurology 44, 105–111 (1994).

    Article  CAS  Google Scholar 

  43. Risse, S.C. et al. Myoclonus, seizures, and paratonia in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 4, 217–225 (1990).

    Article  CAS  Google Scholar 

  44. Romanelli, M.F., Morris, J.C., Ashkin, K. & Coben, L.A., Advanced Alzheimer's disease is a risk factor for late-onset seizures. Arch. Neurol. 47, 847–850 (1990).

    Article  CAS  Google Scholar 

  45. Hauser, W.A., Morris, M.L., Heston, L.L. & Anderson, V.E. Seizures and myoclonus in patients with Alzheimer's disease. Neurology 36, 1226–1230 (1986).

    Article  CAS  Google Scholar 

  46. Begemann, M., Tan, S.-S., Cunningham, B.A. & Edelman, G.M. Expression of chicken liver cell adhesion molecule fusion genes in transgenic mice. Proc. natn. Acad. Sci. U.S.A. 87, 9042–9046 (1990).

    Article  CAS  Google Scholar 

  47. Wyllie, A.H. Cell death. Int. Rev. Cytol. S17, 755–785 (1987).

    Google Scholar 

  48. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  Google Scholar 

  49. Cohen, J.J. Apoptosis. Immunol. Today 14, 126–130 (1993).

    Article  CAS  Google Scholar 

  50. Duffy, P., Mayeuz, R. & Kupsky, W., Famillal Alzheimer's disease with myoclonus and ‘spongy change’. Arch. Neurol. 45, 1097–1100 (1988).

    Article  CAS  Google Scholar 

  51. Carson, D.A. & Ribeiro, J.M. Apoptosis and disease. Lancet 341, 1251–1254 (1993).

    Article  CAS  Google Scholar 

  52. Loo, D.T. et al. Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc. natn. Acad. Sci. U.S.A. 90, 7951–7955 (1993).

    Article  CAS  Google Scholar 

  53. Norton, W.T., Aquino, D.A., Hozumi, I., Chiu, F.-C. & Brosnan, C.F. Quantitative aspects of reactive gliosis: a review. Neurochem. Res. 17, 877–885 (1992).

    Article  CAS  Google Scholar 

  54. Delacourte, A. General and dramatic glial reaction in Alzheimer brains. Neurology 40, 33–37 (1990).

    Article  CAS  Google Scholar 

  55. Vijayan, V.K. et al. Astrocyte hypertrophy in the Alzheimer's disease hippocampal formation. Exp. Neurol. 112, 72–78 (1991).

    Article  CAS  Google Scholar 

  56. Frederickson, R.C.A. Astroglia in Alzheimer's disease. Neurobiol. Aging 13, 239–253 (1992).

    Article  CAS  Google Scholar 

  57. Eng, L.F. Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J. Neuroimmunol. 8, 203–214 (1985).

    Article  CAS  Google Scholar 

  58. Mucke, L., Oldstone, M.B.A., Morris, J.C. & Nerenberg, M.I. Rapid activation of astrocyte-specific expression of GFAP-lacZ transgene by focal injury. New Biol. 3, 465–474 (1991).

    CAS  Google Scholar 

  59. Mandybur, T.I. & Chuirazzi, C.C. Astrocytes and the plaques of Alzheimer's disease. Neurology 40, 635–639 (1990).

    Article  CAS  Google Scholar 

  60. Joachim, C.L., Mori, H. & Selkoe, D.J. Amyloid β-protein deposition in tissues other than brain in Alzheimer's disease. Nature 341, 226–230 (1989).

    Article  CAS  Google Scholar 

  61. Byrne, G.W. & Ruddle, F.H. Multiplex gene regulation: A two-tiered approach to transgene regulation in transgenic mice. Proc. natn. Acad. Sci. U. S. A 86, 5473–5477 (1989).

    Article  CAS  Google Scholar 

  62. Julien, J.-P., Beaudet, L., Tretjakoff, I. & Peterson, A. Neurofilament gene expression in transgenic mice. J. Physiol. (Paris) 84, 50–52 (1992).

    Google Scholar 

  63. Monteiro, M.J., Hoffman, P.J., Gearhart, J.D. & Cleveland, D.W. Expression of NF-L in both neuronal and nonneuronal cells of transgenic mice: increased neurofilament density in axons without affecting caliber. J. Cell Biol. 111, 1543–1557 (1990).

    Article  CAS  Google Scholar 

  64. Pollock, R.A., Jay, G. & Bieberich, C.J. Altering the boundaries of Hox3.1 expression: evidence for antipodal gene expression. Cell 71, 911–923 (1992).

    Article  CAS  Google Scholar 

  65. Selkoe, D.J. et al. Beta-amyloid precursor protein of Alzheimer disease occurs as 110-to 135 kilodalton membrane-associated proteins in neural and nonneural tissues. Proc. natn. Acad. Sci. U.S.A. 85, 7341–7345 (1988).

    Article  CAS  Google Scholar 

  66. Kim, K.S. et al. Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide. Neurosci. Res. Comm. 2, 121–130 (1988).

    CAS  Google Scholar 

  67. Kozak, M. Bifunctional messenger RNAs in eukaryotes. Cell 44, 283–292 (1986).

    Article  CAS  Google Scholar 

  68. Carswell, S. & Alwine, J.C. Efficiency of utilization of the simian virus 40 late polyadenylatlon site: effects of upstream sequences. Molec. cell. Biol. 9, 4248–4258 (1989).

    Article  CAS  Google Scholar 

  69. Monteiro, M.J. & Cleveland, D.W. Expression of NF-L and NF-M in f ibroblasts reveals coassembly of neurofilament and vimentin subunits. J. Cell Biol. 108, 579–593 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaFerla, F., Tinkle, B., Bieberich, C. et al. The Alzheimer's Aβ peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 9, 21–30 (1995). https://doi.org/10.1038/ng0195-21

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0195-21

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing