Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map

A Correction to this article was published on 01 June 1994

Abstract

High–resolution genetic linkage maps are indispensable for positional cloning of disease genes Current procedures for map construction, although aided considerably by many existing computer programs, require extensive user–intervention at each of many repetitive steps This is time consuming, labour intensive and increases the chance of error. We have developed an expert system computer program, MultiMap, which automates this step–by–step procedure. MultiMap is based on a novel map construction algorithm and allows investigator control of marker locus characteristics, such as informativeness, scorability or distance to nearest neighbours. We used MultiMap to construct a human genetic map at an average resolution of 6 cM, using published genotypes at 1266 microsatelhto markers, and further extended this map by adding 397 VNTR and polymorphic gene markers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Collins, F. Positional cloning: lets not call it reverse anymore. Nature Genet. 1, 3–6 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Chakravarti, A. & Lander, E. in Banbury Report 33: Genetics and Biology of Alcoholism (eds. C.R. Cloninger & E. Begleiter) 307–315 (Cold Spring Harbor Press, New York, 1991).

    Google Scholar 

  3. Weber, J.L. & May, P.E. Abundant class of human DMA polymorphisms which can be typed using the polymerase chain reaction. Am. J. hum. Genet. 44, 388–396 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Litt, M. & Luty, J.A. A hypervariable microsatelllte revealed by in vitro amplification of a dlnucleotide repeat within the cardiac muscle actin gene. Am. J. hum. Genet. 44, 397–401 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. NIH/CEPH Collaborative Mapping Group. A comprehensive genetic linkage map of the human genome. Science 258, 67–86 (1992).

  7. Dietrich, W. et al. A genetic map of the mouse suitable for typing intraspeclfic crosses. Genetics 131, 423–447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ziegle, J.S. et al. Application of automated DNA sizing technology for genotyping microsatellite loci. Genomics 14, 1026–1031 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Vignal, A. et al. in Methods in Molecular Genetics, Volume 1: Gene and Chromosome Analysis 211–221 (ed. Adolph, K. W.) (Academic Press, New York, 1993).

    Google Scholar 

  10. Dausset, J. Lecentre d'étude du polymoiphisme humain. La Presse Médicale 15, 1801–1802 (1986).

    CAS  PubMed  Google Scholar 

  11. Ott, J. Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies. Am. J. hum. Genet. 26, 588–597 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. natn. Acad. Sci. U.S.A. 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  13. Lander, E.S. et al. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Lander, E.S. & Green, P. Construction of multi-locus genetic linkage maps in humans. Proc. natn. Acad. Sci. U.S.A. 84, 2363–2367 (1987).

    Article  CAS  Google Scholar 

  15. Lange, K., Weeks, D. & Boehnke, M. Programs for pedigree analysis: MENDEL, FISHER and dGENE. Genet. Epidemiol. 5, 471–472 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Buchanan, B.G. & Smith, R.G. Fundamentals of expert systems. Ann. Rev. Comput. Sci. 3, 23–58 (1988).

    Article  Google Scholar 

  17. Keats, B.J.B. et al. Guidelines for human linkage maps: an international system for human linkage maps (ISLM, 1990). Genomics 9, 557–560 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Weeks, D.E. in Advanced Techniques in Chromosome Research (ed. K.W. Adolph) 297–330 (Marcel Dekker, New York, 1991).

    Google Scholar 

  19. OConnell, P. et al. A primary genetic linkage map for human chromosome 12. Genomics 1, 93–102 (1987).

    Article  CAS  Google Scholar 

  20. Barker, D. et al. A genetic linkage map of 63 DNA markers on chromosome 7. Proc. natn. Acad. Sci. U.S.A. 84, 8006–8010 (1987).

    Article  CAS  Google Scholar 

  21. Buetow, K.H. et al. A detailed map of human chromosome 4 provides evidence for linkage heterogeneity and position-specific recombination rates. Am. J. hum. Genet. 48, 911–925 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Donis-Keller, H. et al. A genetic linkage map of the human genome. Cell 5l, 319–337 (1987).

    Article  Google Scholar 

  23. Cox, T.K., Perlin, M. & Chakravarti, A. MultiMap: Automatic construction of linkage maps. Am. J. hum. Genet. 51 (Suppl.), A33 (1992).

    Google Scholar 

  24. Cox, T.K. Automated genetic linkage mapping: development and performance assessment of an expert system computer program. (Ph. D. dissertation, University of Pittsburgh, 1992).

    Google Scholar 

  25. Lupski, J.R. et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 66, 219–232 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Buetow, K.H. Influence of aberrant observations on high-resolution linkage analysis outcomes. Am. J. hum. Genet. 49, 985–994 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lasher, L., Reefer, J. & Chakravarti, A. Effects of genotyping errors on the estimation of chromosome map length. Am. J. hum. Genet. 49, 369 (1991).

    Google Scholar 

  28. Chakravarti, A. Information content of the Centre dEtude du Polymorphisme Humain (CEPH) family structures for linkage studies. Hum. Genet. 87, 721–724 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Botstein, D., White, R.L., Skolnick, M. & Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. hum. Genet. 32, 314–331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chakravarti, A., Lasher, L.K. & Reefer, J.E. A maximum likelihood method for estimating genome length using linkage data. Genetics 128, 175–182 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mclnnis, M.G. et al. A linkage map of human chromosome 21: 43 PCR markers at average intervals of 2.5 cM. Genomics 16, 562–571 (1993).

    Article  Google Scholar 

  32. Engelstein, M. et al. A PCR based linkage map of human chromosome 1. Genomics 15, 251–258 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Hong, H.-K., Giorda, R., Trucco, M. & Chakravarti, A. Dinucleotlde repeat polymorphisms at the DT3S192 and D73SJ93 loci. Hum. molec. Genet. 2, 86 (1992).

    Article  Google Scholar 

  34. Hong, H.-K., Giorda, R., Yu, L.M., Trucco, M. & Chakravarti, A. A microsatellite repeat polymorphism at the D13S197 locus. Hum. molec. Genet. 2, 337 (1992).

    Article  Google Scholar 

  35. Morton, N.E. Parameters of the human genome. Proc. natn Acad. Sci. U.S.A. 88, 7474–7476 (1991).

    Article  CAS  Google Scholar 

  36. Weissenbach, J. et al. Improving the resolution of the Genethon genetic linkage map. In Genome Mapping and Sequencing, 199 (Cold Spring Harbor Press, Cold Spring Harbor Laboratory, 1993).

    Google Scholar 

  37. Cox, D.R., Burmelster, M., Price, E.R., Kim, S. & Myers, R.M. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 250, 245–250 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Green, P. Genetic Analysis Workshop 7: Issues in gene mapping and detection of major genes. (eds MacCluer, J.W. et al.) Cytogenet. Cell Genet. 59, 122 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Chakravarti, A. & Reefer, J.E. Genetic Analysis Workshop 7: Issues in gene mapping and detection of major genes. (eds MacCluer, J.W. et al.) Cytogenet. Cell Genet. 59, 99 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Chakravarti, A. A graphical representation of genetic and physical maps: the Marey map. Genomics 11, 219–222 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Matise, T.C., Blaschak, J.E., Kompanek, A.J., Weeks, D.E. & Chakravarti, A. Patterns of sex-difference and interference in the human genome. Am. J. hum. Genet. 53, 262 (1993).

    Google Scholar 

  42. Buetow, K.H. & Chakravarti, A. Multipoint gene mapping using seriation II. Analysis of simulated and empirical data. Am. J. hum. Genet. 41, 189–201 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Steele, G.L. Common Lisp: The Language. Digital Press, Burlington, Massachusetts (1984).

    Google Scholar 

  44. LUCID Inc. Lucid Common Lisp/Sparc. (Menlo Park, Califomia, 1990).

  45. Carnegie Mellon University. Carnegie Mellon Common Lisp (CMU CL). (Pittsburgh, Pennsylvania, 1992).

  46. Cuttichia, A., Fasman, K., Kingsbury, D., Robbins, R. & Pearson, P. The GDB™ Human Genome Data Base 1993. Nucl. Acids Res. 21, 3003–3006 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matise, T., Perlin, M. & Chakravarti, A. Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map. Nat Genet 6, 384–390 (1994). https://doi.org/10.1038/ng0494-384

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0494-384

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing