Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A microsatellite genetic linkage map for zebrafish (Danio rerio)

Abstract

We have constructed a zebrafish genetic linkage map consisting of 705 simple sequence-length polymorphism markers (SSLPs). The map covers 2350 centimorgans (cM) of the zebrafish genome with an average resolution of 3.3 cM. It is a complete map in genetic mapping terms (there is one linkage group for each of the 25 chromosomes), and it has been confirmed by somatic-cell hybrids and centromere-mapping using half-tetrad analysis. The markers are highly polymorphic in the zebrafish strains used for genetic crosses and provide a means to compare genetic segregation of developmental mutations between laboratories. These markers will provide an initial infrastructure for the positional cloning of the nearly 600 zebrafish genes identified as crucial to vertebrate developmentfand will become the anchor for the physical map of the zebrafish genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mullins, M.C., Hammerschmidt, M., Haffter, P. & Nusslein-Volhard, C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189–202 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Solnica-Krezel, L., Schier, A.F. & Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401–1420 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    CAS  PubMed  Google Scholar 

  4. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    CAS  PubMed  Google Scholar 

  5. Driever, W. & Fishman, M.C. The zebrafish: heritable disorders in transparent embryo. J. Clin. Invest. 97, 1788–1794 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dietrich, W.F. et al. A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–225 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Dietrich, W. et al. A comprehensive genetic map of the mouse genome. Nature 380,149–152 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Jacob, H.J. et al. A genetic linkage map of the laboratory rat, Rattus norvegicus. Nature Genet. 9, 63–69 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Bishop, M.D. et al. A genetic linkage map for cattle. Genetics 136, 619–639 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Crawford, A.M. et al. An autosomal genetic linkage map of the sheep genome. Genetics 140. 703–724 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rohrer, G.A. et al. A comprehensive map of the porcine genome. Genome Res. 6, 371–391 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Hudson, T.J. et al. An STS-based map of the human genome. Science 270, 1945–1954 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Postlethwait, J.H. et al. A genetic linkage map for the zebrafish. Science 264, 699–703 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, S.L. et al. Centromere-linkage analysis and consolidation of the zebrafish genetic map. Genetics 142, 1277–1288 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Knapik, E.W. et al. A reference cross DMA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development 123, 451–460 (1996).

    CAS  PubMed  Google Scholar 

  17. Breen, M. et al. Towards high resolution maps of the mouse and human genomes —a facility for ordering markers to 0.1 cM resolution. Hum. Mol. Genet. 3, 621–627 (1994).

    Article  CAS  Google Scholar 

  18. Goff, D.J. et al. Identification of polymorphic simple sequence repeats in the genome of the zebrafish. Genomics 14, 200–202 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Ekker, M. et al. Stable transfer of zebrafish chromosome segments into mouse cells. Genomics 33, 57–64 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Phillips, R.B., Reed, K.M. & Rab, P. Revised karyotypes and chromosome banding of coregonid fishes from the Laurentian Great Lakes. Can. J. Zoo. 74, 323–329 (1996).

    Article  Google Scholar 

  21. Daga, R.R., Thode, G. & Amores, A. Chromosome complement, C-banding, Ag-NOR and replication banding in the zebrafish Danio rerio. Chromosome Res. 4, 29–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Donis-Keller, H. et al. A genetic linkage map of a human genome. Cell 51, 319–337 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Collins, A., Frezal, J., Teague, J. & Morton, N.E. A metric map of humans: 23,500 loci in 850 bands. Proc. Natl. Acad. Sci. USA 93, 14771–14775 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sambrooke, J., Fritsch, E.F. & Manitatis, T. Molecular Cloning: A Laboratory Manual. 5.68–5.71 (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  26. Lander, E.S. et al. MAPMAKER-An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. Lincoln, S.E. & Lander, E.S. Systematic detection of errors in genomic linkage data. Genomics 14, 604–610 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Fisher, S., Amacher, S.L. & Halpern, M.E. Loss of cerebum function ventralizes the zebrafish embryo. Development 124, 1301–1311 (1997).

    CAS  PubMed  Google Scholar 

  29. Ekker, M., Akimenko, M.A., Bremiller, R. & Westerfield, M. Regional expression of three homeobox transcripts in the inner ear of zebrafish embryos. Neuron 9, 27–35 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Schulte-Merker, S. et al. Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos. Development 4, 843–852 (1994).

    Google Scholar 

  31. Stachel, S.E., Grunwald, D.J. & Myers, P.Z. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 4, 1261–1274 (1993).

    Google Scholar 

  32. Chin, A.J., Chen, J.N. & Weinberg, E.S. Bone morphogenetic protein-4 expression characterizes inductive boundaries in organs of developing zebrafish. Dev. Genes Evol. 207, 104–114 (1997).

    Article  Google Scholar 

  33. Martinez-Barbera, J.P., Toresson, H., DaRocha, S. & Krauss, S. Cloning and expression of three members of the zebrafish Bmp family: Bmp2a, Bmp2b and Bmp4. Gene 198, 53–59 (1997).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knapik, E., Goodman, A., Ekker, M. et al. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet 18, 338–343 (1998). https://doi.org/10.1038/ng0498-338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0498-338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing