Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

What everybody should know about the rat genome and its online resources

It has been four years since the original publication of the draft sequence of the rat genome. Five groups are now working together to assemble, annotate and release an updated version of the rat genome. As the prevailing model for physiology, complex disease and pharmacological studies, there is an acute need for the rat's genomic resources to keep pace with the rat's prominence in the laboratory. In this commentary, we describe the current status of the rat genome sequence and the plans for its impending 'upgrade'. We then cover the key online resources providing access to the rat genome, including the new SNP views at Ensembl, the RefSeq and Genes databases at the US National Center for Biotechnology Information, Genome Browser at the University of California Santa Cruz and the disease portals for cardiovascular disease and obesity at the Rat Genome Database.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GViewer visualization of rat genes and QTLs associated with cardiovascular disease.

References

  1. Gibbs, R.A. et al. Nature 428, 493–521 (2004).

    Article  CAS  Google Scholar 

  2. Worley, K.C., Weinstock, G.M. & Gibbs, R.A. Physiol. Genomics 32, 273–282 (2007).

    Article  Google Scholar 

  3. STAR Consortium. Nat. Genet. 40, 560–566 (2008).

  4. Zimdahl, H. et al. Science 303, 807 (2004).

    Article  CAS  Google Scholar 

  5. Hubbard, T.J. et al. Nucleic Acids Res. 35, D610–D617 (2007).

    Article  CAS  Google Scholar 

  6. Curwen, V. et al. Genome Res. 14, 942–950 (2004).

    Article  CAS  Google Scholar 

  7. Fernandez-Suarez, X.M., Searle, S. & Birney, E. in In Silico Genomics and Proteomics: Functional Annotation of Genomes and Proteins (eds. Mulder, N. & Apweiler, R.) 109–113 (Nova Science, New York, 2006).

    Google Scholar 

  8. Eyras, E., Caccamo, M., Curwen, V. & Clamp, M. Genome Res. 14, 976–987 (2004).

    Article  CAS  Google Scholar 

  9. Cunningham, F. et al. Nat. Genet. 38, 853 (2006).

    Article  CAS  Google Scholar 

  10. Mueller, M. et al. Bioinformatics 22, 509–511 (2006).

    Article  CAS  Google Scholar 

  11. Kasprzyk, A. et al. Genome Res. 14, 160–169 (2004).

    Article  CAS  Google Scholar 

  12. Walker, J.R. et al. Genome Res. 14, 742–749 (2004).

    Article  CAS  Google Scholar 

  13. Twigger, S.N., Shimoyama, M., Bromberg, S., Kwitek, A.E. & Jacob, H.J. Nucleic Acids Res. 35, D658–D662 (2007).

    Article  CAS  Google Scholar 

  14. Pruitt, K.D., Tatusova, T. & Maglott, D.R. Nucleic Acids Res. 35, D61–D65 (2007).

    Article  CAS  Google Scholar 

  15. Maglott, D., Ostell, J., Pruitt, K.D. & Tatusova, T. Nucleic Acids Res. 35, D26–D31 (2007).

    Article  CAS  Google Scholar 

  16. Kent, W.J., Baertsch, R., Hinrichs, A., Miller, W. & Haussler, D. Proc. Natl. Acad. Sci. USA 100, 11484–11489 (2003).

    Article  CAS  Google Scholar 

  17. Kent, W.J. et al. Genome Res. 12, 996–1006 (2002).

    Article  CAS  Google Scholar 

  18. Karolchik, D. et al. Nucleic Acids Res. 36, D773–D779 (2008).

    Article  CAS  Google Scholar 

  19. Bult, C.J., Eppig, J.T., Kadin, J.A., Richardson, J.E. & Blake, J.A. Nucleic Acids Res. 36, D724–D728 (2008).

    Article  CAS  Google Scholar 

  20. The Uniprot Consortium. Nucleic Acids Res. 35, D193–D197 (2007).

  21. Bodenreider, O. & Stevens, R. Brief. Bioinform. 7, 256–274 (2006).

    Article  CAS  Google Scholar 

  22. Ashburner, M. et al. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  23. Smith, C.L., Goldsmith, C.A. & Eppig, J.T. Genome Biol. 6, R7 (2005).

    Article  Google Scholar 

  24. Aitman, T. et al. Nat. Genet. 40, 516–522 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Aitman, N. Hübner and A. Kwitek for helpful comments during the preparation of this manuscript. This work was supported in part by the Intramural Research Program of the US National Institutes of Health, National Library of Medicine. RGD is supported in part by US National Institutes of Health grants HL-64541 and HG-002273. EURATools and the STAR consortium are supported through the Sixth Framework Programme of the European Union, action line LSH-2003-1.1.0-1. The UCSC Genome Browser project is funded by grants from the NHGRI, the Howard Hughes Medical Institute and the US National Cancer Institute. The Phase 2 genome project and SNP discovery at Baylor College of Medicine Human Genome Sequencing Center is funded by NHGRI HG-003273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon N Twigger.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–9 (PDF 1433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Twigger, S., Pruitt, K., Fernández-Suárez, X. et al. What everybody should know about the rat genome and its online resources. Nat Genet 40, 523–527 (2008). https://doi.org/10.1038/ng0508-523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0508-523

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing