Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Organization of the Fugu rubripes Hox clusters: evidence for continuing evolution of vertebrate Hox complexes

Abstract

The clustered organization of Hox genes provides a powerful opportunity to examine gene gain and loss in evolution because physical linkage is a key diagnostic feature which allows homology to be established unambiguously. Furthermore, Hox genes play a key role in determination of axial and appendicular skeletal morphology1,2 and may be a key component of the evolution of diverse metazoan body forms. Despite suggestions that changes in Hox gene number played a role in evolution of metazoan body plans3,4, there has been a general lack of evidence for such variation amongst gnathostomes (or indeed any vertebrate) and it has therefore been widely assumed that differential regulation may be the key element in all vertebrate Hox evolution. We have studied the Hox gene clusters of a teleost fish, Fugu rubripes, to test the possibility that Hox organization may have varied since the origin of jawed vertebrates. We have identified four Hox complexes in Fugu and found an unprecedented degree of variation when compared with tetrapod clusters. Our data show that: Fugu clusters are widely variant with respect to length; at least nine genes have been lost; there is a new group-2 paralogue; and pseudogene remnants of group-1 and group-3 paralogues were found in the Hoxc complex, when compared with the present mammalian clusters. We show that gene loss after duplication of the prototypical vertebrate Hox clusters is a key feature of both tetrapod and fish evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    Article  CAS  Google Scholar 

  2. Burke, A.C., Nelson, C.E., Morgan, B.A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995).

    CAS  Google Scholar 

  3. Lewis, E. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Article  CAS  Google Scholar 

  4. Akam, M. Hox genes and the evolution of diverse body plans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 349, 313–319 (1995).

    Article  CAS  Google Scholar 

  5. Nelson, J. Fishes of the World 1–600 (John Wiley & Sons Inc., New York, 1994).

  6. Tyler, J., Osteology, phylogeny and higher classification of the fishes of the order Plectognathii (Tetraodontiformes). NOAA Tech. Rept. NMFS Circ. 434, 1–122 (1980).

    Google Scholar 

  7. Pollock, R.A., Sreenath, T., Ngo, L. & Bieberich, C.J. Gain of function mutations for paralogous hox genes — implications for the evolution of hox gene-function. Proc. Natl. Acad. Sci. USA 92, 4492–4496 (1995).

    Article  CAS  Google Scholar 

  8. Pollock, R.A., Jay, G. & Bieberich, C.J. Altering the boundaries of Hox3.1 expression: evidence for antipodal gene regulation. Cell 71, 911–23 (1992).

    Article  CAS  Google Scholar 

  9. Horan, G. et al. Compound mutants for the paralogous Hoxa-4, Hoxb-4, and Hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev. 9, 1667–1677 (1995).

    Article  CAS  Google Scholar 

  10. Jegalian, B.G. & De, R.E. Homeotic transformations in the mouse induced by overexpression of a human Hox3.3 transgene. Cell 71, 901–910 (1992).

    Article  CAS  Google Scholar 

  11. Nonchev, S. et al. The conserved role of krox-20 in directing Hox gene expression during vertebrate hindbrain segmentation. Proc. Natl. Acad. Sci (USA) 93, 9339–9345 (1996).

    Article  CAS  Google Scholar 

  12. Marshall, H., et al. A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370, 567–571 (1994).

    Article  CAS  Google Scholar 

  13. Aparicio, S. et al. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc. Natl. Acad. Sci. USA 92, 1684–1688 (1995).

    Article  CAS  Google Scholar 

  14. Popperl, H. et al. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81, 1031–1042 (1995).

    Article  CAS  Google Scholar 

  15. Brenner, S. et al. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366, 265–268 (1993).

    Article  CAS  Google Scholar 

  16. Graham, A., Papalopulu, N. & Krumlauf, R. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57, 367–378 (1989).

    Article  CAS  Google Scholar 

  17. Zeltser, L., Desplan, C. & Heintz, N. Hoxb-13 — a new hox gene in a distant region of the hoxb cluster maintains colinearity. Development 122, 2475–2484 (1996).

    CAS  PubMed  Google Scholar 

  18. Duboule, D. Guidebook to the Homeobox Genes. 284(Oxford University Press, Oxford, 1994).

  19. Vanderhoeven, R., Sordino, P., Fraudeau, N., Izpisuabelmonte, J.C. & Duboule, D. Teleost hoxd and hoxa genes — comparison with tetrapods and functional evolution of the hoxd complex. Mech. Dev. 54, 9–21 (1996).

    Article  CAS  Google Scholar 

  20. Garciafernandez, J. & Holland, P. Archetypal organization of the amphioxus Hox gene-cluster. Nature 370, 563–566 (1994).

    Article  CAS  Google Scholar 

  21. Misof, B.Y. & Wagner, G.P. Evidence for 4 Hox clusters in the killifish fundulus-heteroclitus (teleostei). Mol. Phylogenet. Evol. 5, 309–322 (1996).

    Article  CAS  Google Scholar 

  22. Misof, B.Y., Blanco, M.J. & Wagner, G.P. PCR-survey of Hox-genes of the zebrafish — new sequence information and evolutionary implications. J. Exp. Zool. 274, 193–206 (1996).

    Article  CAS  Google Scholar 

  23. Scott, M.P. Vertebrate homeobox gene nomenclature. Cell 71, 551–553 (1992).

    Article  CAS  Google Scholar 

  24. Pendleton, J., Nagai, B.K., Murtha, M.T. & Ruddle, F.H. Expansion of the Hox gene family and the evolution of chordates. Proc. Natl. Acad, Sci. USA 90, 6300–6304 (1993).

    Article  CAS  Google Scholar 

  25. Acampora, D. et al. The human HOX gene family. Nucl. Acids Res. 17, 10385–10402 (1989).

    Article  CAS  Google Scholar 

  26. Altschul, S., Gish, W., Miller, M., Myers, E.W. & Lipman, D.J. A basic local alignment search tool. J. Molec. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  27. Church, G. & Gilbert, W., Genome sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995 (1984).

    Article  CAS  Google Scholar 

  28. Thompson, J., Higgins, D.G. & Gibson, T.J. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680 (1995).

    Article  Google Scholar 

  29. Staden, R. An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucl. Acids Res. 10, 2951–2961 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Aparicio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparicio, S., Hawker, K., Cottage, A. et al. Organization of the Fugu rubripes Hox clusters: evidence for continuing evolution of vertebrate Hox complexes. Nat Genet 16, 79–83 (1997). https://doi.org/10.1038/ng0597-79

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0597-79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing