Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deregulation of both imprinted and expressed alleles of the insulin–like growth factor 2 gene during β–cell tumorigenesis

Abstract

In a mouse model of multistage carcinogenesis elicited by the SV40 large T–antigen (Tag) oncogene in pancreatic β cells, the gene for insulin–like growth factor IGF2 is focally up–regulated and functionally implicated in tumour development. The IGF2 gene is differentially regulated in normal tissues: the paternal allele is transiently expressed during embryogenesis, whereas the maternal allele is genomically imprinted and inactive. Crossbred mice carrying the Tag oncogene and a disruption of either the paternal or maternal allele of IGF2 reveal that both alleles are co–activated early during tumour development, and that each contributes to malignant hyperproliferation and consequent tumour volume.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Solter, D. Differential imprinting and expression of maternal and paternal genomes. Annu. Rev. Genet. 22, 127–146 (1990).

    Article  Google Scholar 

  2. Efstratiadis, A. Parental imprinting of autosomal mammalian genes. Curr. Opinion Genet. & Develop. 4, 265–280 (1994).

    Article  CAS  Google Scholar 

  3. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    Article  CAS  Google Scholar 

  4. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  Google Scholar 

  5. Ferguson-Smith, A.C., Cattanach, B.M., Barton, S.C., Beechey, C.V. & Surani, M.A. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351, 667–670 (1991).

    Article  CAS  Google Scholar 

  6. Rappolee, D.A. et al. Insulin-like growth factor II acts through an endogenous growth pathway regulated by imprinting in early mouse embryos. Genes Dev. 6, 939–952 (1992).

    Article  CAS  Google Scholar 

  7. Stylianopoulou, F., Herbert, J., Soares, M.B. & Efstratiadis, A. Expression of the insulin-like growth factor II gene in choroid plexus and the leptomeninges of the adult rat central nervous system. Proc. natn. Acad. Sci. U.S.A. 85, 141–145 (1988).

    Article  CAS  Google Scholar 

  8. Leff, S.E. et al. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. Nature Genet. 2, 259–264 (1992).

    Article  CAS  Google Scholar 

  9. Hayashizaki, Y. et al. Identification of an imprinted U2af binding protein related sequence on mouse chromosome 11 using the RLGS method. Nature Genet. 6, 33–40 (1994).

    Article  CAS  Google Scholar 

  10. Giddings, S.J., King, C.D., Harman, K.W., Flood, J.F. & Carnaghi, L.R. Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nature Genet. 6, 310–313 (1994).

    Article  CAS  Google Scholar 

  11. Villar, A.J. & Pederson, R.A. Parental imprinting of the Mas protooncogene in mouse. Nature Genet. 8, 373–379 (1994).

    Article  CAS  Google Scholar 

  12. Kay, G.F. et al. Expression of Xist during mouse development suggests a role in initiation of X chromosome inactivation. Cell 72, 171–182 (1993).

    Article  CAS  Google Scholar 

  13. Barlow, D.P., Stöger, R., Herrmann, B.G., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely related to the Tme locus. Nature 349, 84–87 (1991).

    Article  CAS  Google Scholar 

  14. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).

    Article  CAS  Google Scholar 

  15. Jinno, Y. et al. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nature Genet. 6, 305–309 (1994).

    Article  CAS  Google Scholar 

  16. Hanahan, D. Heritable formation of of pancreatic beta cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122 (1985).

    Article  CAS  Google Scholar 

  17. Alpert, S., Hanahan, D. & Teitelman, G. Hybrid insulin genes reveal developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53, 295–308 (1988).

    Article  CAS  Google Scholar 

  18. Teitelman, G., Alpert, S. & Hanahan, D., Proliferation, senescence, and neoplastic progression of β cells in hyperplastic pancreatic islets. Cell 52, 97–105 (1988).

    Article  CAS  Google Scholar 

  19. Folkman, J. et al. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).

    Article  CAS  Google Scholar 

  20. Christofori, G., Naik, P. & Hanahan, D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 369, 414–418 (1994).

    Article  CAS  Google Scholar 

  21. DeChiara, T.M., Efstratiadis, A. & Robertson, E.J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 75–80 (1990).

    Article  Google Scholar 

  22. Sasaki, H. et al. Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Genes Dev. 6, 1843–1856 (1992).

    Article  CAS  Google Scholar 

  23. Szabo, P. & Mann, J.R. Expression and methylation of imprinted genes during in vitro differentiation of mouse parthenogenetic and androgenetic embryonic stem cell lines. Development 120, 1651–1660 (1994).

    CAS  Google Scholar 

  24. Bartolomei, M.S., Webber, L., Brunkow, M.E. & Tilghman, S.M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7, 1663–1673 (1993).

    Article  CAS  Google Scholar 

  25. Ferguson-Smith, A.C., Sasaki, H., Cattanach, B.M. & Surani, M.A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362, 751–755 (1993).

    Article  CAS  Google Scholar 

  26. Harrington, E.A., Bennett, M.R., Fanidi, A. & Evan, G.I., Evan, G.I. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 13, 3286–3295 (1994).

    Article  CAS  Google Scholar 

  27. Ferguson-Smith, A.C., Reik, W. & Surani, M.A. Genomic imprinting and cancer. Cancer Surv. 9, 487–503 (1990).

    CAS  PubMed  Google Scholar 

  28. Schofield, P.N. & Engstrom, W. in Tne Insulin-like Growth Factors: Structure and Biological Function (ed. Schofield, P.N.) (Oxford University Press, Oxford, 1992).

    Google Scholar 

  29. Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature 362, 747–749 (1993).

    Article  CAS  Google Scholar 

  30. Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature 362, 749–751 (1993).

    Article  CAS  Google Scholar 

  31. Dietrich, W.F. et al. Genome-wide search for loss of heterozygosity in transgenic mouse tumors reveals candidate tumor suppressor genes on chromosomes 9 and 16. Proc. natn. Acad. Sci. U.S.A. 91, 9451–9455 (1994).

    Article  CAS  Google Scholar 

  32. Gotoh, M., Maki, T., Kiyoizumi, T., Satomi, S. & Monaco, A.P. An improved method for isolation of mouse pancreatic islets. Transplantation 40, 437–438 (1985).

    Article  CAS  Google Scholar 

  33. Smith, K.M., Lawn, R.M. & Wilcox, J.N. Cellular localization of apolipoprotein D and lecithin:cholesterol acyltransferase mRNA in rhesus monkey tissues by in situ hybridization. J. Lipid Res. 31, 995–1004 (1990).

    CAS  Google Scholar 

  34. Kandel, J. et al. D Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66, 1095–1104 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christofori, G., Naik, P. & Hanahan, D. Deregulation of both imprinted and expressed alleles of the insulin–like growth factor 2 gene during β–cell tumorigenesis. Nat Genet 10, 196–201 (1995). https://doi.org/10.1038/ng0695-196

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0695-196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing