Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A gene mutated in X–linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast

Abstract

X-linked recessive myotubular myopathy (MTM1) is characterized by severe hypotonia and generalized muscle weakness, with impaired maturation of muscle fibres. We have restricted the candidate region to 280 kb and characterized two candidate genes using positional cloning strategies. The presence of frameshift or missense mutations (of which two are new mutations) in seven patients proved that one of these genes is indeed implicated in MTM1. The protein encoded by the MTM1 gene is highly conserved in yeast, which is surprising for a muscle specific disease. The protein contains the consensus sequence for the active site of tyrosine phosphatases, a wide class of proteins involved in signal transduction. At least three other genes, one located within 100 kb distal from the MTM1 gene, encode proteins with very high sequence similarities and define, together with the MTM1 gene, a new family of putative tyrosine phosphatases in man.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wallgren-Pettersson, C. & Thomas, N. Report on the 20th ENMC sponsored international workshop: myotubular/centronuclear myopathy. Neuromusc.Descord. 4, 71–74 (1994).

    Article  CAS  Google Scholar 

  2. Fardeau, M., Congential Myopathy in Skeletal muscle Pathology (eds Mastaglia, F.L & Walton of Detchant) (Edinburgh, Churchill Livingstone, 1992).

    Google Scholar 

  3. Sarnat, H.B., Myopathy: arrest of morphogenesis of myofibers associated with persistence of fetal vimentine and desmin Four cases compared with fetal and neonatal muscle. Can. J. Neurol. Sci. 17, 109–123 (1990).

    Article  CAS  Google Scholar 

  4. Sawchak, J.A., Sher, J.H., Norman, M.G., Kula, R.W. & Shafiq, S.A. Centronuclear myopathy heterogeneity: distinction of clinical types by myosin isoform patterns. Neurol. 41, 135–140 (1991).

    Article  CAS  Google Scholar 

  5. Wallgren-Pettersson, C. et al. The Myotubular myopathies: differential diagnosis of the X linked recessive, autosomal dominant, and autosomal recessive forms and present state of DMA studies. J. Med. Genet. 32, 673–679 (1995).

    Article  CAS  Google Scholar 

  6. Heckmatt, J.Z., Sewry, C.A., Hodes, D. & Dubowitz, V. Congenital centronuclear (myotubular) myopathy: a clinical, pathological and genetic study in eight children. Brain 108, 941–064 (1985).

    Article  Google Scholar 

  7. Thomas, N. et al. X-linked centronuclear/myotubular myopathy: evidence for linkage to Xq28 DMA marker loci. J. Med. Genet. 27, 284–287 (1990).

    Article  CAS  Google Scholar 

  8. Damfors, C. et al. X-linked myotubular myopathy: a linkage study. Clin. Genet. 37, 335–340 (1990).

    Article  Google Scholar 

  9. Lehesjoki, A.E. et al. X-linked neonatal myotubular myopathy: one recombination detected with four polymorphic DMA markers from Xq28. J. Med. Genet. 27, 288–291 (1990).

    Article  CAS  Google Scholar 

  10. Start, J., Lamont, M., L, Harvey, J.& Heckmatt, J. A linkage study of a large pedigree with X-linked centronuclear myopathy. J. Med. Genet. 27, 281–283 (1990).

    Article  Google Scholar 

  11. Liechti-Gallati, S. et al. X-linked centronuclear myopathy: mapping the gene to Xq28. Neuromusc. Disord. 4, 239–245 (1991).

    Article  Google Scholar 

  12. Janssen, E.A. et al. The gene for X-linked myotubular myopathy is located in an 8 Mb region at the border of Xq27. 3 and Xq28. Neuromusc. Disord. 4, 455–461 (1994).

    Article  CAS  Google Scholar 

  13. Dahl, N. et al. X linked myotubular myopathy (MTM1) maps between DXS304 and DXS305, closely linked to the DXS455 VNTR and a new, highly informative microsatellite marker (DXS1684). J. Med. Genet. 31, 922–924 (1994).

    Article  CAS  Google Scholar 

  14. Dahl, N. et al.Myotubular myopathy in a girl with a deletion at Xq27–q28 and unbalanced X inactivation assigns the MTM1 gene to a 600-kb region. Am. J. Hum. Genet. 56, 1108–1115 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu, L.J. et al. Deletions in Xq28 in two boys with Myotubular myopathy and abnormal genital development define a new contiguous gene syndrome in a 430kb region. Hum. Mol. Genet. 5, 139–143 (1996).

    Article  CAS  Google Scholar 

  16. Kioschis, P. et al. A 900-kb cosmid contig and 1 à new transcripts within the candidate region for myotubular myopathy (MTM1). Genomics (in the press).

  17. Hu, L.J. et al. X-linked myotubular myopathy: refinement of the gene to a 280 kb region with new and highly informative microsatellite markers. Hum. Genet. (in the press).

  18. Korn, B. et al. A strategy for the selection of transcribed sequences in Xq28 region. Hum. Mol. Genet. 4, 235–242 (1992).

    Article  Google Scholar 

  19. Sedlacek, Z. et al. Construction of a 300 kb region around the human G6PD locus by direct cDNA selection. Hum. Mol. Genet. 11, 1865–1869 (1993).

    Article  Google Scholar 

  20. Buckler, A.J. et al. Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc. NaU. Acad. Sci. USA 88, 4005–4009 (1991).

    Article  CAS  Google Scholar 

  21. Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DMA using exon amplification. Nature Genet. 6, 98–105 (1994).

    Article  CAS  Google Scholar 

  22. Andersson, B., Lu, F., Muzny, D.M. & Gibbs, R.A. Complete sequence of a 38. 4-kb human cosmid insert containing the polymorphic marker DXS455 from Xq28. DNASeq. 5, 219–223 (1995).

    CAS  Google Scholar 

  23. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in humanDNA sequences by a multiple sensor-neural approach. Proc. Natl. Acad. Sci. USA 88, 11261–11265 (1991).

    Article  CAS  Google Scholar 

  24. Xu, Y., Mural, R., Shah, M. & Uberbacher, E. Recognizing exons in genomic sequence using GRAIL II. Genet. Eng. (N. Y.) 16, 241–253 (1994).

    CAS  Google Scholar 

  25. Solovyev, V.V., Salamov, A.A. & Lawrence, C.B. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames. Nucl. Acids Res. 22, 5156–5163 (1994).

    Article  CAS  Google Scholar 

  26. Gregg, R.G., Metzenberg, A.B., Hogan, K., Sekhon, G. & Laxova, R. Waisman syndrome, a human X-linked recessive basal ganglia disorder with mental retardation: localization toXq27 3-qter. Genomics 9, 701–706 (1991).

    Article  CAS  Google Scholar 

  27. Gedeon, A., Kerr, B., Mulley, J. & Turner, G. Localisation of the MRX3 gene for non-specific X linked mental retardation. J. Med. Genet. 28, 372–377 (1991).

    Article  CAS  Google Scholar 

  28. Biancalana, V., Le Marec, B., Odent, S., Van den Hurk, J.A.M.J. & Hanauer, A. Oto-palato-digital syndrome type I: further evidence for assignement of the locus to Xq28. Hum. Genet. 88, 228–230 (1991).

    Article  CAS  Google Scholar 

  29. Palmieri, G. et al. YAC contig organization and CpG island analysis in Xq28. Genomics 24, 149–158 (1994).

    Article  CAS  Google Scholar 

  30. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basis local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  31. Fischer, E.H., Charbonneau, H. & Tonks, N.K. Proteintyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 253, 401–406 (1991).

    Article  CAS  Google Scholar 

  32. Mourey, R.J. & Dixon, J.E. Protein tyrosine phosphatases: characterization of extracellular and intracellular domains. Curr. Opin. Genet. Dev. 4, 31–39 (1994).

    Article  CAS  Google Scholar 

  33. Mosser, J. et al. Putative X-linked adrendeukodystrophy gene shares unexpected homdogy with ABC transporters. Nature 361, 726–730 (1993).

    Article  CAS  Google Scholar 

  34. Bronner, C.E. et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-pdyposis colon cancer. Nature 368, 258–261 (1994).

    Article  CAS  Google Scholar 

  35. Tugendreich, S., Bassett, D.E., McKusick, V.A., Boguski, M.S. & Hieter, R. Genes conserved in yeast and humans. Hum. Mol. Genet. 3, 1509–1517 (1994).

    Article  CAS  Google Scholar 

  36. Tonks, N.K. Introduction: protein tyrosine phosphatases. Semin. Cell Biol. 4, 373–377 (1993).

    Article  CAS  Google Scholar 

  37. Samson, F. et al. Genetic linkage heterogeneity in myotubular myopathy. Am. J. Hum. Genet. 57, 120–126 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Donoghue, M.J. & Sanes, J.R. All muscles are not created equal. Trends. Genet. 10, 39–6401 (1994).

    Article  Google Scholar 

  39. Florini, J.R., Ewton, D.Z. & Magri, K.A., Hormones, growth factors, and myogenic differentiation. Annu. Rev. Physiol. 53, 201–216 (1991).

    Article  CAS  Google Scholar 

  40. Valenzuela, D.M. et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15, 573–584 (1995).

    Article  CAS  Google Scholar 

  41. Rastinejad, F., Conboy, M.J., Rando, T.A. & Blau, H.M. Tumor suppression by RNA from the 3′ untranslated region of alpha-tropomyosin. Cell 75, 1107–1117 (1993).

    Article  CAS  Google Scholar 

  42. Miller, S., Dykes, D. & Polesky, H. A simple salting out method for extracting DNA from human nucleated cells. Nucl. Acids Res. 16, 1215 (1988).

    Article  CAS  Google Scholar 

  43. Oberie, I. et al. Characterization of a set of X-linked sequences and of a panel of somatic cell hybrids useful for the regional mapping of the human X chromosome. Hum. Genet. 72, 43–49 (1986).

    Article  Google Scholar 

  44. Berry, R. et al. Gene-based sequence-tagged-sites (STSs) as the basis for a human gene map. Nature Genet. 10, 415–423 (1995).

    Article  CAS  Google Scholar 

  45. Lanfranchi, G. et al. Identification of 4,370 expressed sequence tags (ESTs) from a 3′-end specific cDNA library of human skeletal muscle by DNA sequencing and fitter hybridization. Genome Res. (in the press).

  46. Castilla, L.H. et al. Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nature Genet. 8, 387–391 (1994).

    Article  CAS  Google Scholar 

  47. Wilson, R. et al. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature 368, 32–38 (1994).

    Article  CAS  Google Scholar 

  48. Gribskov, M. & Burgess, R.R. Sigma factors from E. coli, B. subtilis, phage SP01, and phage T4 are homologous proteins. Nucl. Acids Res. 14, 6745–6763 (1986).

    Article  CAS  Google Scholar 

  49. Lan, M.S., Lu, J., Goto, Y. & Notkins, A.L. Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol. 13, 505–514 (1994).

    Article  CAS  Google Scholar 

  50. Yang, Q. & Tonks, N.K. Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4 1, erzin, and talin. Proc. Natl. Acad. Sci. USA 88, 5949–5953 (1991).

    Article  CAS  Google Scholar 

  51. Streuli, M., Krueger, N.X., Tsai, A.Y.M. & Saito, H. A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila. Proc. Natl. Acad. Sci. USA 86, 8698–6702 (1989).

    Article  CAS  Google Scholar 

  52. Mauro, L.J. et al. Identification of a hormonally regulated protein tyrosine phosphatase associated with bone and testicular differenciation. J. Biol. Chem. 269, 30659–30667 (1994).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laporte, J., Hu, L., Kretz, C. et al. A gene mutated in X–linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13, 175–182 (1996). https://doi.org/10.1038/ng0696-175

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0696-175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing