Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome

A Correction to this article was published on 01 May 1998

Abstract

Ulnar-mammary syndrome is a rare pleiotropic disorder affecting limb, apocrine gland, tooth and genital development. We demonstrate that mutations in human T8X3, a member of the T-box gene family, cause ulnar-mammary syndrome in two families. Each mutation (a single nucleotide deletion and a splice-site mutation) is predicted to cause haploinsufficiency of TBX3, implying that critical levels of this transcription factor are required for morphogenesis of several organs. Limb abnormalities of ulnar-mammary syndrome involve posterior elements. Mutations in TBX5, a related and linked gene, cause anterior limb abnormalities in Holt-Oram syndrome. We suggest that during the evolution of TBX3 and TBX5 from a common ancestral gene, each has acquired specific yet complementary roles in patterning the mammalian upper limb.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Leck, I. in Human Malformations and Related Anomalies. Vol.1 (eds. Stevenson, R.E., Hall, J.G. & Goodman, M.M.) 65–94 (Oxford University Press, Oxford, 1993).

    Google Scholar 

  2. Muragaki, Y., Mundlos, S., Upton, J. & Olson, B.R. Altered growth and branching patterns in synpolydactyly caused by mutations in HoxD13. Science. 272, 548–551 (1996).

    Article  CAS  Google Scholar 

  3. Thomas, J.T. et al. A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nature Genet. 12, 315–317 (1996).

    Article  CAS  Google Scholar 

  4. Pallister, P.D., Herrmann, J. & Opitz, J.M. A pleiotropic dominant mutation affecting skeletal, sexual and apocrine-mammary development. Birth Defects Orig. Art. Ser. 12, 247–254 (1976).

    CAS  PubMed  Google Scholar 

  5. Gonzales, C.H., Herrmann, J. & Opitz, J.M. Mother and son affected with the ulnar-mammary syndrome type Pallister. Eur. J. Pediatr. 123, 225–235 (1976).

    Article  Google Scholar 

  6. Hecht, J.T. & Scott, C.I. Jr., The Schinzel syndrome in a mother and daughter. Clin. Genet. 25, 63–67 (1984).

    Article  CAS  Google Scholar 

  7. Schinzel, A. Ulnar-mammary syndrome. J. Med. Genet. 24, 778–781 (1987).

    Article  CAS  Google Scholar 

  8. Schinzel, A., Illig, R. & Prader, A. The ulnar-mammary syndrome: an autosomal dominant pleiotropic gene. Clin. Genet. 32, 160–168 (1987). Erratum. Clin. Genet. 32, 425 (1987).

    Article  CAS  Google Scholar 

  9. Franceschini, P. et al. Possible relationship between ulnar-mammary syndrome and split hand with aplasia of the ulna syndrome. Am. J. Med. Genet. 44, 807–812 (1992).

    Article  CAS  Google Scholar 

  10. Bamshad, M., Root, S. & Carey, J.C. Clinical analysis of a large kindred with the Pallister ulnar-mammary syndrome. Am.J. Med. Genet. 65, 325–331 (1996).

    Article  CAS  Google Scholar 

  11. Bamshad, M. et al. A gene for ulnar-mammary syndrome maps to 12q23-q24.1. Hum. Molec. Genet. 4, 1973–1977 (1995).

    Article  CAS  Google Scholar 

  12. Bollag, R.J. et al. An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T-locus. Nature Genet. 7, 383–389 (1994).

    Article  CAS  Google Scholar 

  13. Herrmann, B.G. & Kispert, A. The T genes in embryogenesis. Trends Genet. 10, 280–286 (1994).

    Article  CAS  Google Scholar 

  14. Kispert, A., Koschorz, B. & Herrmann, B.G. The T protein encoded by Brachyury is a tissue-specific transcription factor. EMBO J. 14, 4763–4772 (1995).

    Article  CAS  Google Scholar 

  15. Gibson-Brown, J.J. et al. Evidence of a role for T-box genes in the evolution of limb morphogenesis and the specification of forelimb/hindlimb indentity. Mech. Dev. 56, 93–101 (1996).

    Article  CAS  Google Scholar 

  16. Chapman, D.L. et al. Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev. Dyn. 206, 379–390 (1996).

    Article  CAS  Google Scholar 

  17. Basson, C.T. et al. Mutations in human TBX5cause limb and cardiac malformation in Holt-Oram syndrome. Nature Genet. 15, 30–35 (1997).

    Article  CAS  Google Scholar 

  18. Law, D.J., Gebuhr, T., Garvey, N., Agulnik, S.I. & Silver, L.M. Identification, characterization, and localization to chromosome 17q21-22 of the human TBX2 homolog, member of a conserved developmental gene family. Mamm. Genome. 6, 793–797 (1995).

    Article  CAS  Google Scholar 

  19. Li, Q.Y. et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nature Genet. 15, 21–29 (1997).

    Article  Google Scholar 

  20. Agulnik, S.I. et al. Evolution of mouse T-box genes by tandem duplication and cluster dispersion. Genetics. 144, 249–254 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Herrmann, B.C., Labeit, S., Poustka, A., King, T. & Lehrach, H. Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617–622 (1990).

    Article  CAS  Google Scholar 

  22. Smith, J.C., Price, B.M., Green, J.B.A., Weigel, D. & Herrmann, B.G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87 (1991).

    Article  CAS  Google Scholar 

  23. Pflugfelder, G.O., Roth, H. & Poeck, B. A homology domain shared between Drosophila optomotor-blind, and mouse Brachyury is involved in DNA binding. Biochem. Biophys. Res. Comm. 186, 918–925 (1992).

    Article  CAS  Google Scholar 

  24. Schulte-Merker, S., van Eeden, F.J., Halpern, M.E., Kimmel, C.B., & Nusslein-Volhard, C. No tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–1015 (1994).

    CAS  Google Scholar 

  25. Kispert, A., Herrmann, B.C., Leptin, M. & Reuter, R. Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. Genes Dev. 8, 2137–2150 (1994).

    Article  CAS  Google Scholar 

  26. Agulnik, S.I., Bollag, R.J. & Silver, L.M. Conservation of the T-box gene family from M. musculusto C. elegans. Genomics 25, 214–219 (1995).

    Article  CAS  Google Scholar 

  27. Bulfone, A. et al. T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15, 63–78 (1995).

    Article  CAS  Google Scholar 

  28. Campbell, C., Goodrich, K., Casey, G. & Beatty, B. Cloning and mapping of a human gene (TBX2) sharing a highly conserved protein motif with the Drosophila omb gene. Genomics 28, 255–260 (1995).

    Article  CAS  Google Scholar 

  29. Morrison, K. et al. Genetic mapping of the human homologue (T) of mouse T (Brachyury) and a search for allele association between human 7and spina bifida. Hum. Mol. Genet. 5, 669–674 (1996).

    Article  CAS  Google Scholar 

  30. Nakatani, Y., Yasuo, H., Satoh, N. & Nishida, H. Basic fibroblast growth factor induces notochord formation and the expression of As-T, a Brachyury homolog, during ascidian embryogenesis. Development 122, 2023–2031 (1996).

    CAS  PubMed  Google Scholar 

  31. Chapman, D.L., Agulnik, I., Hancock, S., Silver, L.M. & Papaioannou, V.E. Tbx6, a mouse T-box gene implicated in paraxial mesoderm formation at gastrulation. Dev. Biol. 180, 534–542 (1996).

    Article  CAS  Google Scholar 

  32. Holt, M. & Oram, S. Familial heart disease and skeletal manifestations. Br. Heart J. 22, 236–242 (1960).

    Article  CAS  Google Scholar 

  33. Basson, C.T. et al. The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome). N. Engl. J. Med. 330, 885–891 (1994).

    Article  CAS  Google Scholar 

  34. Rudiger, R.A., Haase, W. & Passarge, E. Association of ectrodactyly, ectodermal dysplasia and cleft lip-palate: the EEC syndrome. Am. J. Dis. Child. 120, 160–163 (1970).

    Article  CAS  Google Scholar 

  35. Buss, P.W., Hughes, H.E. & Clarke, A. Twenty-four cases of the EEC syndrome: clinical presentation and management. J. Med. Genet. 32, 716–723 (1995).

    Article  CAS  Google Scholar 

  36. Hamel, B. et al. A large family with limb-mammary syndrome: clinical and molecular findings. Eur. J. Hum. Genet. 4, Suppl. 1, 148 (1996).

  37. Bell, G.I., Karem, J.H. & Rutter, J.R. Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Proc. Natl. Acad. Sci. USA. 78, 5759–5763 (1981).

    Article  CAS  Google Scholar 

  38. Anderson, M.A. & Gusella, J.F. Use of cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro Cell. Dev. Biol. 20, 856–858 (1984).

    Article  CAS  Google Scholar 

  39. Thierfelder, L. et al. α-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 77, 701–712 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bamshad, M., Lin, R., Law, D. et al. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet 16, 311–315 (1997). https://doi.org/10.1038/ng0797-311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0797-311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing