Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trinucleotide repeat length instability and age of onset in Huntington's disease

Abstract

The initial observation of an expanded and unstable trinucleotide repeat in the Huntington's disease gene has now been confirmed and extended in 150 independent Huntington's disease families. HD chromosomes contained 37–86 repeat units, whereas normal chromosomes displayed 11–34 repeats. The HD repeat length was inversely correlated with the age of onset of the disorder. The HD repeat was unstable in more than 80% of meiotic transmissions showing both increases and decreases in size with the largest increases occurring in paternal transmissions. The targeting of spermatogenesis as a particular source of repeat instability is reflected in the repeat distribution of HD sperm DNA. The analysis of the length and instability of individual repeats in members of these families has profound implications for presymptomatic diagnosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martin, J.B. & Gusella, J.F. Huntington's disease: Pathogenesis and management. New Engl. J. Med. 315, 1267–1276 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Merrit, A.D., Conneally, P.M., Rahman, N.F. & Drew, A.L., Juvenile Huntington's chorea. In Progress in neurogenetics (eds Barbeau A. & Brunette, J.R.) 645–650 (Excerpta Medica, Amsterdam, 1969).

    Google Scholar 

  3. Bird, E.D., Caro, A.J. & Pilling, J.B. A sex related factor in the inheritance of Huntington's chorea. Ann. hum. Genet. 37, 255–260 (1974).

    Article  CAS  PubMed  Google Scholar 

  4. Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  5. Gusella, J.F. et al. A polymorphic DNA marker genetically linked to Huntington's Disease. Nature 306, 234–238 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Wexler, N.S. et al. Homozygotes for Huntington's disease. Nature 326, 194–197 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Folstein, S.E. et al. Huntington's Disease: Two families with differing clinical features show linkage to the G8 probe. Science 229, 776–779 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. MacDonald, M.E. et al. The Huntington's disease candidate region exhibits many different haplotypes. Nature Genet. 1, 99–103 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. MacDonald, M.E. et al. Recombination events suggest possible locations for the Huntington's disease gene. Neuron 3, 183–190 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Pritchard, C. et al. Recombination of 4p16 DNA markers in an unusual family with Huntington disease. Am. J. hum. Genet. 50, 1218–1230 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Meissen, G.J. et al. Predictive testing for Huntington's disease with use of a linked DNA marker. New Engl. J. Med. 318, 535–542 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Brandt, J. et al. Presymptomatic diagnosis of delayed-onset disease with linked DNA markers: The experience in Huntington's disease. J. Am. med. Assoc. 261, 3108–3114 (1989).

    Article  CAS  Google Scholar 

  13. Suthers, G.K., Huson, S.M., & Davies, K.E. Instability versus predictability: the molecular diagnosis of myotonic dystrophy. J. med. Genet. 29, 761–765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fu, Y.H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Kremer, E.J. et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252, 1711–1714 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Verkerk, A.J.M.H. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 904–914 (1991).

    Article  Google Scholar 

  17. Yu, S. et al. Fragile-X syndrome: unique genetics of the heritable unstable element. Am. J. hum. Genet. 50, 968–980 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Aslanidis, C. et al. Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature 355, 548–551 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Buxton, J. et al. Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355, 547–548 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Fu, Y.H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1259 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Harley, H.G. et al. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355, 545–546 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Harley, H.G. et al. Unstable DNA sequence in myotonic dystrophy. Lancet 339, 1125–1128 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Tsilfidis, C., McKenzie, A.E., Mettler, G., Barcelo, J. & Komeluk, R.G. Correlation between CTG trinucleotide repeat length and frequency of severe congential myotonic dystrophy. Nature Genet. 1, 192–195 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Bruner, H.G. et al. Reverse mutation in myotonic dystrophy. New Engl. J. Med. 328, 476–480 (1993).

    Article  Google Scholar 

  27. LaSpada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fishbeck, H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  Google Scholar 

  28. LaSpada, A.R. et al. Meiotic stability and genotype-phenotype correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular atrophy. Nature Genet 2, 301–304 (1992).

    Article  CAS  Google Scholar 

  29. Biancalana, V., Serville, F., Pommier, J., Julien, J., Hanauer, A. & Mandel, J.L. Moderate instability of the trinucleotide repeat in spino-bulbar muscular atrophy. Hum. molec. Genet. 1, 255–258 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Conneally, P.M. et al. Huntington disease: No evidence for locus heterogeneity. Genomics 5, 304–308 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Anderson, M.A. & Gusella, J.F. Use of cyclosporin A in establishing Epstein-Barr virus-transformed human lymphoblastoid cell lines. In Vitro 20, 856–858 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. SAS/STAT User's Guide, Version 6, 4th edn, Vol.2 (SAS Institute Inc., Cary, North Carolina, 1989).

  33. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Gispert, S. et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23–24.1 Nature Genet. 4, 295–299 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duyao, M., Ambrose, C., Myers, R. et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet 4, 387–392 (1993). https://doi.org/10.1038/ng0893-387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0893-387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing