Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis

Abstract

Mice constitutively lacking alleles of the p53 tumour suppressor gene spontaneously develop lymphomas and sarcomas. We report here that a single dose of 4 Gy radiation dramatically decreases the latency for tumour development in p53 heterozygous mice. The pattern of genetic alterations at the remaining wild type allele in these tumours differs substantially from spontaneous tumours from similar mice indicating that p53 itself may have been a target for radiation-induced alterations. Lower dose irradiation (1 Gy) of preweanling p53 null mice also significantly decreases tumour latency, suggesting that there are additional genetic targets involved in radiation-induced malignancy. Thus p53-deficient mice provide a sensitive model system for studies of the consequences of radiation exposure.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation. (United Nations, New York, 1988).

  2. Breimer, L.H. Ionizing radiation-induced mutagenesis. Brit. J. Cancer 57, 6–18 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Keurbitz, S.J., Plunkett, B.S., Walsh, W.V. & Kastan, M.B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. natn. Acad. Sci. U.S.A. 89, 7491–7495 (1992).

    Article  Google Scholar 

  4. Lowe, S.W., Schmitt, E.M., Smith, S.W., Osborne, B.A. & Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Clarke, A.R. et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Merritt, A.J. et al. The role of spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53 deficient mice. Cancer Res. 54, 614–617 (1994).

    CAS  PubMed  Google Scholar 

  7. Lotem, J. & Sachs, L. Hematopoeitic cells from mice deficient in wild type p53 are more resistant to induction of apoptosis by some agents. Blood 82, 1092–1096 (1993).

    CAS  PubMed  Google Scholar 

  8. Lane, D.P. p53, guardian of the genome. Nature 358, 15–16 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Harvey, M. et al. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 8, 2457–2467 (1993).

    CAS  PubMed  Google Scholar 

  10. Livingstone, L.R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, J.M. & Bernstein, A. p53 mutations increase resistance to ionizing radiation. Proc. natn. Acad. Sci. U.S.A. 90, 5742–5746 (1993).

    Article  CAS  Google Scholar 

  12. Slichenmyer, W.J., Nelson, W.G., Slebos, R.J. & Kastan, M.B. Loss of p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res. 53, 4164–4168 (1993).

    CAS  PubMed  Google Scholar 

  13. Kemp, C.J., Donehower, L.A., Bradley, A. & Balmain, A. Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74, 813–822 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Nelson, W.G. & Kastan, M.B. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Molec. cell. Biol. 14, 1815–1823 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harvey, M., McArthur, M.J., Montgomery, C.A. Jr., Butel, J.S., Bradley, A. & Donehower, L.A. Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nature Genet. 5, 225–229 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Purdie, C.A. et al. Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene. 9, 603–609 (1994).

    CAS  PubMed  Google Scholar 

  17. Jacks, T. et al. Tumour spectrum analysis in p53-mutant mice. Current Biol. 4, 1–7 (1994).

    Article  CAS  Google Scholar 

  18. Searle, A.G. The biological basis of risk assesment 123–137 (Taylor and Francis, New York, 1989).

    Google Scholar 

  19. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Kennedy, A.R., Fox, M., Murphy, G. & Little, J.B. Relationship between x-ray exposure and malignant transformation of C3H 10 T1/2 cells. Proc. natn. Acad. Sci. U.S.A. 77, 7262–7266 (1980).

    Article  CAS  Google Scholar 

  21. Yi, C.H., Yandell, D.W. & Little, J.B. Evidence for coincident mutations in human lymphoblast clones selected for functional loss of a thymidine kinase gene. Molec. Carcinog. 5, 270–277 (1992).

    Article  Google Scholar 

  22. Kadhim, M.A. et al. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 355, 738–740 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Marder, B.A. & Morgan, W.F. Delayed chromosomal instability induced by DNA damage. Molec. cell. Biol. 13, 6667–6677 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kemp, C.J., Fee, F. & Balmain, A. Allelotype analysis of mouse skin tumours using polymorphic microsatellites: sequencial genetic alterations on chromosomes 6, 7 and 11. Cancer Res. 53, 6022–6027 (1993).

    CAS  PubMed  Google Scholar 

  25. Wiseman, R.W., Cochran, C., Dietrich, W., Lander, E.S. & Soderkvist, P. Allelotyping of butadiene-induced lung and mammary adenocarcinomas of B6C3F1 mice: frequent losses of heteroygosity in regions homologous to human tumor-suppressor genes. Proc. natn. Acad. Sci. U.S.A. 91, 3759–3763 (1994).

    Article  CAS  Google Scholar 

  26. Srivastava, S., Zou, Z.Q., Pirolla, K., Blattner, W. & Chang, E.H. Germ line transmission of a mutated p53 gene in a family with Li-Fraumeni syndrome. Nature 348, 747–749 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Li, F.P. et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 48, 5358–5362 (1988).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemp, C., Wheldon, T. & Balmain, A. p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 8, 66–69 (1994). https://doi.org/10.1038/ng0994-66

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0994-66

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing