Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36

Abstract

Sacral agenesis is a rare disorder of uncertain incidence1 that has been reported in diverse populations. Although usually sporadic and most commonly associated with maternal diabetes, there is a hereditary form which may occur in isolation or with a presacral mass (anterior meningocele and/or presacral teratoma) and anorectal abnormalities, which constitute the Currarino triad2 (MIM 176450). The radiological hallmark of hereditary sacral agenesis is a hemi-sacrum (sickle-shaped sacrum) with intact first sacral vertebra. Bowel obstruction is the usual neonatal presentation, but, unlike other neural tube defects, adult presentation is not uncommon. The major pathology is confined to the pelvic cavity and may present as a space-occupying lesion or meningitis due to ascending infection. All recurrences in families have been compatible with autosomal dominant inheritance except for those associated with the isomerism gene at Xq24–q27.1 (ref. 3). Several associated cytogenetic defects have been reported, including 7q deletions4. Previous studies failed to detect linkage to HLA markers5,6, but we now present evidence for a location on 7q36. The same region also contains a gene for holoprosencephaly, an early malformation of the extreme rostral end of the neural tube7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pang, D. Sacral agenesis and caudal spinal cord malformations. Neurosurgery 32, 755–779 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Currarino, G., Coln, D. & Votteler, T. Triad of anorectal, sacral, and presacral anomalies. Am. J. Roentgenol. 137, 395–398 (1981).

    Article  CAS  Google Scholar 

  3. Casey, B., Devoto, M., Jones, K.L. & Ballabio, A. Mapping a gene for familial situs abnormalities to human chromosome Xq24–q2701. Nature Genet. 5, 403–407 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Human Cytogenetics Database, version 1.0. (Oxford University Press Electronic Publishing, 1994).

  5. Fellous, M. et al. A five-generation family with sacral agenesis and spina bifida: possible similarities with the mouse t-locus. Am. J. med Genet. 12, 465–487 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Chatkupt, S. et al. Linkage analysis of a candidate locus (HLA) in autosomal dominant sacral defect with anterior meningocele. Am. J. med. Genet. 52, 1–4 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Muenke, M. Holoprosencephaly as a genetic model for normal craniofacial development. Semin. dev. Biol. 5, 293–301 (1994).

    Article  Google Scholar 

  8. O'Riordain, D.S., O'Connell, P.R. & Kirwan, W.O. Hereditary sacral agenesis with presacral mass and anorectal stenosis: the Currarino triad. Br. J. Surg. 78, 536–538 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Nour, S., Kumar, D. & Dickson, J. Anorectal malformations with sacral bony abnormalities. Arch. Dis. Child. 64, 1618–1620 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Green, E.D. et al. Integration of physical, genetic and cytogenetic maps of human chromosome 7: isolation and analysis of yeast artificial chromosome clones for 117 mapped genetic markers. Hum. molec. Genet. 3, 489–501 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Muller, F. & O'Rahilly, R. The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol. (Berlin) 176, 413–430 (1987).

    Article  CAS  Google Scholar 

  12. Copp, A.J. & Brook, F.A. Does lumbosacral spina bifida arise by failure of neural folding or by defective canalisation? J. med. Genet. 26, 160–166 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fan, C.M. & Tessier-Lavigne, M. Patterning of mammalian somites by surface ectroderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79, 1175–1186 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Basler, K., Edlund, T., Jessell, T.M. & Yamada, T. Control of cell pattern in the neural tube: regulation of cell differentiation by dirsalin-1, a novel TGB family member. Cell 73, 687–702 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Tam, P.P.L. The histogenetic capacity of tissues in the caudal end of the embryonic axis of the mouse. J. Embryol. exp. Morph. 82, 253–266 (1984).

    CAS  PubMed  Google Scholar 

  16. Alles, A.J. & Sulik, K.K. Retinoic acid-induced spina bifida: evidence for a pathogenetic mechanism. Development 108, 73–81 (1990).

    CAS  PubMed  Google Scholar 

  17. Lohnes, D. et al. Function of retinoic acid receptor gamma in the mouse. Cell 73, 643–658 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Chesley, P. Development of the short-tailed mutant in the house mouse. J. exp. Zool. 70, 429–459 (1935).

    Article  Google Scholar 

  19. Koseki, H. et al. A role for Pax-1 as a mediator of notochordal signals during the dorsoventral specification of vertebrae. Development 119, 649–660 (1993).

    CAS  PubMed  Google Scholar 

  20. Cohen, M.M.J. & Sulik, K.K. Perspectives on holoprosencephaly. Part II. Central nervous system, craniofacial anatomy, syndrome commentary, diagnostic approach, and experimental studies. J. Craniofacial Genet. Dev. Biol. 12, 196–244 (1992).

    Google Scholar 

  21. Gurrieri, F. et al. Physical mapping of the holoprosencephaly critical region on chromosome 7q36. Nature Genet. 3, 247–251 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Muenke, M. et al. Linkage of a human brain malformation, familial holoprosencephaly, to chromosome 7 and evidence for genetic heterogeneity. Proc. natn. Acad. Sci. U.S.A. 91, 8102–8106 (1994).

    Article  CAS  Google Scholar 

  23. Encyclopaedia of the Mouse Genome Electronic Database. (Jackson Laboratories, Bar Harbor, 1995).

  24. Tsukurov, O. et al. A complex bilateral polysyndactyly disease locus maps to chromosome 7q36. Nature Genet. 6, 282–286 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Heutink, P. et al. The gene for triphalangeal thumb maps to the subtelomeric region of chromosome 7q. Nature Genet. 6, 287–292 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Say, B. & Gerald, P.S. A new polydactyly/imperforate anus/vertebral anomalies syndrome? Lancet 2, 688 (1968).

    Article  CAS  PubMed  Google Scholar 

  27. Morichon-Delvallez, N., Delezoide, A.L., & Vekemans, M. Holoprosencephaly and sacral agenesis in a fetus with a terminal deletion 7q36→7qter. J. med. Genet. 30, 521–524 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin, A.O., Perrin, J.C.S., Muir, W.A., Ruch, E. & Schafer, I.A. An autosomal dominant midline cleft syndrome resembling familial holoprosencephaly. Clin. Genet. 12, 65–72 (1977).

    Article  CAS  PubMed  Google Scholar 

  29. Say, B. & Coldwell, J.G. Hereditary defect of the sacrum. Humangenetik 27, 231–234 (1975).

    CAS  PubMed  Google Scholar 

  30. Kalter, H. Case reports of malformations associated with maternal diabetes: history and critique. Clin. Genet. 43, 174–179 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Tsui, L.-C., Donis-Keller, H. & Grzeschik, K.H. Report of the second international workshop on human chromosome 7 mapping, 1994. Cytogenet. Cell Genet. 71, 1–21 (1995).

    Article  Google Scholar 

  32. Buetow, K.H. et al. Integrated human genome-wide maps constructed using the CEPH reference panel. Nature Genet. 6, 391–393 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Attwood, J. & Bryant, S. A computer program to make linkage analysis with LIPED and LINKAGE easier to perform and less prone to input errors. Ann. hum. Genet. 52, 259 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Cooperative Human Linkage Centre Electronic Database, Iowa University February 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynch, S., Bond, P., Copp, A. et al. A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36. Nat Genet 11, 93–95 (1995). https://doi.org/10.1038/ng0995-93

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0995-93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing