Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BIN1 is a novel MYC–interacting protein with features of a tumour suppressor

Abstract

BIN1 is a novel protein that interacts with the functionally critical Myc box regions at the N terminus of the MYC oncoprotein. BIN1 is structurally related to amphiphysin, a breast cancer–associated autoimmune antigen, and RVS167, a negative regulator of the yeast cell cycle, suggesting roles in malignancy and cell cycle control. Consistent with this likelihood, BIN1 inhibited malignant cell transformation by MYC. Although BIN1 is expressed in many normal cells, its levels were greatly reduced or undetectable in 14/27 carcinoma cell lines and 3/6 primary breast tumours. Deficits were functionally significant because ectopic expression of BIN1 inhibited the growth of tumour cells lacking endogenous message. We conclude that BIN1 is an MYC–interacting protein with features of a tumour suppressor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cole, M.D. The myc oncogene: Its role in transformation and differentiation. Annu. Rev. Genet. 20, 361–384 (1986).

    Article  CAS  Google Scholar 

  2. Evan, G.I. & Littlewood, T.D. The role of c-myc in cell growth. Curr. Opin. Genet. Dev. 3, 44–49 (1993).

    Article  CAS  Google Scholar 

  3. Packham, G. & Cleveland, J. c-Myc and apoptosis. Biochim. Biophys. Acta 1242, 11–28 (1995).

    PubMed  Google Scholar 

  4. Henriksson, M. & Lüscher, B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res. 68, 109–182 (1996).

    Article  CAS  Google Scholar 

  5. Eilers, M., Picard, D., Yamamoto, K.R. & Bishop, J.M. Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340, 66–68 (1989).

    Article  CAS  Google Scholar 

  6. Heikkila, R. et al. A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from G0 to G1. Nature 328, 445–448 (1987).

    Article  CAS  Google Scholar 

  7. Holt, J.T., Redner, R.L. & Nienhuis, A.W. An oligomer complementary to c-myc mRNA inhibits prolieration of HL-60 promyeloctic cells and induces differentiation. Mol. Cell. Biol. 8, 963–973 (1988).

    Article  CAS  Google Scholar 

  8. Sklar, M.D. et al. Depletion of c-myc with specific antisense sequences reverses the transformed phenotype in ras oncogene-transformed NIH 3T3 cells. Mol. Cell. Biol. 11, 3699–3710 (1991).

    Article  CAS  Google Scholar 

  9. Sawyers, C.L., Callahan, W. & Witte, O.N. Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70, 901–10 (1992).

    Article  CAS  Google Scholar 

  10. Hanson, K.D., Shichiri, M., Follansbee, M.R. & Sedivy, J.M. Effects of c-myc expression on cell cycle progression. Mol. Cell. Biol. 14, 5748–5755 (1994).

    Article  CAS  Google Scholar 

  11. Askew, D.S., Ashmun, R.A., Simmons, B.C. & Cleveland, J.L. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6, 1915–22 (1991).

    CAS  Google Scholar 

  12. Evan, G.I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    Article  CAS  Google Scholar 

  13. Meichle, A., Philipp, A. & Eilers, M. The functions of Myc proteins. Biochim Biophys Acta 1114, 129–146 (1992).

    CAS  PubMed  Google Scholar 

  14. Stone, J. et al. Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol. Cell. Biol. 7, 1697–1709 (1987).

    Article  CAS  Google Scholar 

  15. Kato, G.J., Barrett, J., Villa-Garcia, M. & Dang, C.V. An amino-terminal c-Myc domain required for neoplastic transformation activates transcription. Mol. Cell. Biol. 10, 5914–5920 (1990).

    Article  CAS  Google Scholar 

  16. Gupta, S., Seth, A. & Davis, R.J. Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc. Natl. Acad. Sci. USA 90, 3216–3220 (1993).

    Article  CAS  Google Scholar 

  17. Seth, A., Gupta, S. & Davis, R.J. Cell cycle regulation of the c-Myc transcriptional activation domain. Mol. Cell. Biol. 13, 4125–4136 (1993).

    Article  CAS  Google Scholar 

  18. Lutterbach, B. & Hann, S.R. Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Mol. Cell. Biol. 14, 5510–5522 (1994).

    Article  CAS  Google Scholar 

  19. Hoang, A.T. et al. A link between increase transforming activity of lymphoma-derived MYC mutant alleles, their defective regulation by p107, and altered phosphorylation of the c-Myc transactivation domain. Mol. Cell. Biol. 15, 4031–4042 (1995).

    Article  CAS  Google Scholar 

  20. Li, L., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E.B. c-Myc activates and represses target gene through the E-box Myc binding site and the core promoter region respectively. EMBO J. 13, 4070–4079 (1994).

    Article  CAS  Google Scholar 

  21. Papas, T.S. & Lautenberger, J.A. Sequence curiosity in v-myc oncogene. Nature 318, 237 (1985).

    Article  CAS  Google Scholar 

  22. Bhatia, K. et al. Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmacytomas. Nature Genet. 5, 56–61 (1993).

    Article  CAS  Google Scholar 

  23. Yano, T. et al. Clustered mutations in the second exon of the MYC gene in sporadic Burkitt's lymphoma. Oncogene 8, 2741–8 (1993).

    CAS  PubMed  Google Scholar 

  24. Gu, W., Bhatia, K., Magrath, I.T., Dang, C.V. & DallaFavera, R. Binding and suppresion of the myc transcriptional activation domain by p107. Science 264, 251–254 (1994).

    Article  CAS  Google Scholar 

  25. Beijersbergen, R.L., Hijmans, E.M., Zhu, L. & Bernards, R. Interaction of c-Myc with the pRb-related protein p107 results in inhibition of c-Myc-mediated transactivation. EMBO J. 13, 4080–4086 (1994).

    Article  CAS  Google Scholar 

  26. Vojtek, A.B., Hollenberg, S.M. & Cooper, J.A. Mammalian ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214 (1993).

    Article  CAS  Google Scholar 

  27. Pulverer, B.J. et al. Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 9, 59–70 (1994).

    CAS  PubMed  Google Scholar 

  28. Bianchi, M.W., Plyte, S.E., Kreis, M. & Woodgett, J.R. A Saccharomyces cerevisiae protein-serine kinase related to mammalian glycogen synthase kinase-3 and the Drosophila melanogaster gene shaggy product. Gene 134, 51–6 (1993).

    Article  CAS  Google Scholar 

  29. Pawson, T. & Gish, G.D. SH2 and SH3 domains: from structure to function. Cell 71, 359–362 (1992).

    Article  CAS  Google Scholar 

  30. Lichte, B., Veh, R.W., Meyer, H.E. & Kilimann, M.W. Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J. 11, 2521–2530 (1992).

    Article  CAS  Google Scholar 

  31. Folli, F. et al. Autoantibodies to a 128-kd synaptic protein in three women with the stiff-man syndrome and breast cancer. N. Engl. J. Med. 328, 546–51 (1993).

    Article  CAS  Google Scholar 

  32. Brown, R.H. in Principles of Internal Medicine (eds Isselbacher, K.J.) 1878–1882 (McGraw-Hill, New York, 1994).

    Google Scholar 

  33. Bauer, F., Urdaci, M., Aigle, M. & Crouzet, M. Alteration of a yeast SH3 protein leads to conditional viability with defects in cytoskeletal and budding patterns. Mol. Cell. Biol. 13, 5070–5084 (1993).

    Article  CAS  Google Scholar 

  34. Land, H., Parada, L.F. & Weinberg, R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  Google Scholar 

  35. Ruley, H.E. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304, 602–606 (1983).

    Article  CAS  Google Scholar 

  36. Rao, L. et al. The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc. Natl. Acad. Sci. USA 89, 7742–7746 (1992).

    Article  CAS  Google Scholar 

  37. Leder, A., Pattengale, P.K., Kuo, A., Stewart, T.A. & Leder, P. Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 45, 485–95 (1986).

    Article  CAS  Google Scholar 

  38. Sinn, E. et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49, 465–75 (1987).

    Article  CAS  Google Scholar 

  39. Berns, E.M. et al. c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res. 52, 1107–13 (1992).

    CAS  PubMed  Google Scholar 

  40. Hehir, D.J., McGreal, G., Kirwan, W.O., Kealy, W. & Brady, M.P. c-myc oncogene expression: a marker for females at risk of breast carcinoma. J. Surg. Oncol. 54, 207–9 (1993).

    Article  CAS  Google Scholar 

  41. Kreipe, H. et al. Amplification of c-myc but not of c-erbB-2 is associated with high proliferative capacity in breast cancer. Cancer Res. 53, 1956–61 (1993).

    CAS  PubMed  Google Scholar 

  42. Watson, P.H., Safneck, J.R., Le, K., Dubik, D. & Shiu, R.P. Relationship of c-myc amplification to progression of breast cancer from in situ to invasive tumor and lymph node metastasis. J. Natl. Cancer Inst. 85, 902–7 (1993).

    Article  CAS  Google Scholar 

  43. David, C., McPherson, P.S., Mundigl, O. & de Camilli, P. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc. Natl. Acad. Sci. USA 93, 331–335 (1996).

    Article  CAS  Google Scholar 

  44. Gaubatz, S., Meichle, A. & Eilers, M. An E-box element localized in the first intron mediates regulation of the prothymosin α gene by c-myc. Mol. Cell. Biol. 14, 3853–3862 (1994).

    Article  CAS  Google Scholar 

  45. Born, T., Frost, J., Schönthal, A., Prendergast, G.C. & Feramisco, J. c-Myc and oncogenic ras induce the cdc2 promoter. Mol. Cell. Biol. 14, 5741–5747 (1994).

    Article  Google Scholar 

  46. Bello-Fernandez, C., Packham, G. & Cleveland, J.L. The ornithine decarboxylase gene is a transcriptional target of c-MYC. Proc. Natl. Acad. Sci. USA 90, 7804–7808 (1993).

    Article  CAS  Google Scholar 

  47. Sakamuro, D. et al. c-Myc induces apoptosis in epithelial cells by p53-dependent and p53-independent mechanisms. Oncogene 11, 2411–2418 (1995).

    CAS  PubMed  Google Scholar 

  48. Negorev, D. et al. The Bin1 gene localizes to human chromsome 2q14 by PCR analysis of somatic cell hybrids and fluorescence in situ hybridization. Genomics 33, 329–331 (1996).

    Article  CAS  Google Scholar 

  49. Cher, M.L. et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res. 56, 3091–3102 (1996).

    CAS  PubMed  Google Scholar 

  50. Hayata, I. et al. Chromosomal aberrations observed in 52 mouse myeloid leukemias. Cancer Res. 43, 367–373 (1983).

    CAS  PubMed  Google Scholar 

  51. Jahner, D. & Hunter, T. The ras-related gene rhoB is an immediate-early gene inducible by v-Fps, epidermal growth factor, and platelet-derived growth factor in rat fibroblasts. Mol. Cell. Biol. 11, 3682–3690 (1991).

    Article  CAS  Google Scholar 

  52. Murre, C., McCaw, P.S. & Baltimore, D. A new DMA-binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and Myc proteins. Cell 56, 777–783 (1989).

    Article  CAS  Google Scholar 

  53. Prendergast, G.C., Lawe, D. & Ziff, E.B. Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and Ras cotransformation. Cell 65, 395–407 (1991).

    Article  CAS  Google Scholar 

  54. Niman, H.L. et al. Generation of protein-reactive antibodies by short peptides is an event of high frequency: implications for the structural basis of immune recognition. Proc. Natl. Acad. Sci. USA 80, 4949–4953 (1983).

    Article  CAS  Google Scholar 

  55. Kelekar, A. & Cole, M. Tumorigenicity of fibroblast lines expressing the adenovirus E1a, cellular p53, or normal c-myc genes. Mol. Cell. Biol. 6, 7–14 (1986).

    Article  CAS  Google Scholar 

  56. Prendergast, G.C., Hopewell, R., Gorham, B. & Ziff, E.B. Biphasic effect of Max on Myc transformation activity and dependence on N-and C-terminal Max functions. Genes Dev. 6, 2429–2439 (1992).

    Article  CAS  Google Scholar 

  57. Chen, C. & Okayama, H. High efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  58. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1988).

    Google Scholar 

  59. Prendergast, G.C. & Ziff, E.B. Mbh1: A novel gelsolin/severin-related protein which binds actin in vitro and exhibits nuclear localization in vivo. EMBO J. 10, 757–766 (1991).

    Article  CAS  Google Scholar 

  60. Prendergast, G.C. & Cole, M.D. Posttranscriptional regulation of cellular gene expression by the c-myc oncogene. Mol. Celt. Biol. 9, 124–134 (1989).

    Article  CAS  Google Scholar 

  61. Shiozawa, M. et al. Synthesis of human gamma-glutamyl transpeptidase (GGT) during the fetal development of liver. Gene 87, 299–303 (1990).

    Article  CAS  Google Scholar 

  62. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995 (1984).

    Article  CAS  Google Scholar 

  63. Yamamoto, R., Li, X., Winter, S., Francke, U. & Kilimann, M.W. Primary structure of human amphiphysin, the dominant autoantigen of paraneoplastic Stiff-Man Syndrome, and mapping of its gene (AMPH) to chromosome 7p13–p14. Human Mol. Genet. 4, 265–268 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Prendergast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamuro, D., Elliott, K., Wechsler-Reya, R. et al. BIN1 is a novel MYC–interacting protein with features of a tumour suppressor. Nat Genet 14, 69–77 (1996). https://doi.org/10.1038/ng0996-69

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0996-69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing