Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fundamentals of experimental design for cDNA microarrays

Abstract

Microarray technology is now widely available and is being applied to address increasingly complex scientific questions. Consequently, there is a greater demand for statistical assessment of the conclusions drawn from microarray experiments. This review discusses fundamental issues of how to design an experiment to ensure that the resulting data are amenable to statistical analysis. The discussion focuses on two-color spotted cDNA microarrays, but many of the same issues apply to single-color gene-expression assays as well.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic representation of the three layers of design in a simple microarray experiment.

Bob Crimi

Figure 2: Experimental designs for the direct comparison of two samples.
Figure 3: Experimental designs using a reference RNA sample.
Figure 4: Common features in the layout of a microarray slide.
Figure 5: Two examples of one-way classifications with replication.
Figure 6: Experimental design for a 3 × 2 factorial experiment.

Similar content being viewed by others

References

  1. Oleksiak, M.F., Churchill, G.A. & Crawford, D.L. Variation in gene expression within and among natural populations. Nature Genet. 32, 261–266 2002

    Article  CAS  Google Scholar 

  2. Lee, M.T., Kuo, F.C., Whitmore, G.A. & Sklar, J. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl Acad. Sci. USA 97, 9834–9839 (2000).

    Article  CAS  Google Scholar 

  3. Rosenbaum, P.R. Replicating effects and biases. Am. Stat. 55, 223–227 (2001).

    Article  Google Scholar 

  4. Cox, D.R. The Design of Experiments (Wiley, NY, 1958).

    Google Scholar 

  5. Kerr, M.K. & Churchill, G.A. Biostatistics 2, 183–201 (2001).

    Article  CAS  Google Scholar 

  6. Yang, Y.H. & Speed, T.P. Nature Rev. Genet. 3, 579–588 (2002).

    Article  CAS  Google Scholar 

  7. Kerr, M.K. & Churchill, G.A. Statistical design and the analysis of gene expression microarray data. Genet. Res. 77, 123–128 (2001).

    CAS  Google Scholar 

  8. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  Google Scholar 

  9. Jin, W. et al. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genet. 29, 389–395 (2001).

    Article  CAS  Google Scholar 

  10. Simon, R., Radmacher, M.D. & Dobbin, K. Design of studies using DNA microarrays. Genet. Epidemiol. 23, 21–36 (2002).

    Article  Google Scholar 

  11. Quackenbush, J. Microarray data normalization and transformation. Nature Genet. 32, 496–501 (2002).

    Article  CAS  Google Scholar 

  12. Yang, Y.H. et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15 (2002).

    Article  Google Scholar 

  13. Tanner, J. Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. Appl. Physiol. 2, 1–15 (1949).

    Article  CAS  Google Scholar 

  14. Pearson, K. Spurious correlation between indices. Proc. R. Soc. Lond. 60, 489 (1897).

    Article  Google Scholar 

  15. Fisher, R.A. The Design of Experiments 6th edn (Oliver and Boyd, London, 1951).

    Google Scholar 

  16. Slonim, D.K. From patterns to pathways: gene expression data analysis comes of age. Nature Genet. 32, 502–508 (2002).

    Article  CAS  Google Scholar 

  17. Kerr, M.K., Martin, M. & Churchill, G.A. Analysis of variance for gene expression microarray data. J. Comput. Biol. 7, 819–837 (2000).

    Article  CAS  Google Scholar 

  18. Wolfinger, R.D. et al. Assessing gene significance from cDNA microarray expression data via mixed models. J. Comput. Biol. 8, 625–637 (2001).

    Article  CAS  Google Scholar 

  19. Pritchard, C.C., Hsu, L., Delrow, J. & Nelson, P.S. Project normal: defining normal variance in mouse gene expression. Proc. Natl Acad. Sci. USA 98, 13266–13271 (2001).

    Article  CAS  Google Scholar 

  20. Callow, M.J. et al. Microarray expression profiling identifies genes with altered expression in HDL-deficient mice. Genome Res. 10, 2022–2029 (2000).

    Article  CAS  Google Scholar 

  21. Kerr, M.K. et al. Statistical analysis of a gene expression microarray experiment with replication. Stat. Sinica 12, 203–218 (2002).

    Google Scholar 

  22. Churchill, G.A. & Oliver, B. Sex, flies and microarrays. Nature Genet. 29, 355–356 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the US National Institutes of Health. The analogy of measuring one man and one woman is attributed to Peter Petraitis.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Churchill, G. Fundamentals of experimental design for cDNA microarrays. Nat Genet 32 (Suppl 4), 490–495 (2002). https://doi.org/10.1038/ng1031

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing