Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat

A Corrigendum to this article was published on 27 August 2015

This article has been updated

Abstract

Retrotransposons are a principal component of most eukaryotic genomes, representing roughly 40% of the human genome1 and 50–80% of some grass genomes2. They are usually transcriptionally silent but can be activated under certain stresses. Despite their considerable contribution to genome structure, their impact on the expression of adjacent genes is not well understood. The steady-state transcript levels originating from Wis 2-1A retrotransposons are much higher in newly synthesized wheat amphiploids (two or more diverged genomes in the same nucleus). On activation, both Wis 2-1A long terminal repeats drive the readout synthesis of new transcripts from adjacent sequences including the antisense or sense strands of known genes. Here we report that activation of these antisense or sense transcripts is associated with silencing or activation of the corresponding genes, respectively. These data, together with the abundance of retrotransposons in genomes and their ability to be activated by various signals, support the view of transposons as potential controlling elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the Wis 2-1A retrotransposon activation.
Figure 2: cDNA-retrotransposon display.
Figure 3: Expression of transcripts flanking LTRs.
Figure 4: Induction of the iojap-like antisense transcript from the 5′ LTR readout promoter activity as determined by quantitative RT–PCR.

Similar content being viewed by others

Change history

References

  1. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Feschotte, C., Jiang, N. & Wessler, S.R. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3, 329–341 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Fedoroff, N.V. About maize transposable elements and development. Cell 56, 181–191 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Masson, P., Surosky, R., Kingsbury, J.A. & Fedoroff, N.V. Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics 117, 117–137 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Martienssen, R., Barkan, A., Taylor, W.C. & Freeling, M. Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes. Dev. 4, 331–343 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. SanMiguel, P. et al. Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Fu, H. et al. The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome. Proc. Natl. Acad. Sci. USA 98, 8903–8908 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. SanMiguel, P.J., Ramakrishna, W., Bennetzen, J.L., Busso, C.S. & Dubcovsky, J. Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5A(m). Funct. Integr. Genomics 2, 70–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Wicker, T. et al. Analysis of a contiguous 211-kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 26, 307–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Nigumann, P., Redik, K., Matlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Vicient, C.M., Jaaskelainen, M.J., Kalendar, R. & Schulman, A.H. Active retrotransposons are a common feature of grass genomes. Plant Physiol. 125, 1283–1292 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuff, E.L. & Lueders, K.K. The intracisternal A-particle gene family: structure and functional aspects. Adv. Cancer Res. 51, 183–276 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H. & Kanda, M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93, 7783–7788 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pouteau, S., Huttner, E., Grandbastien, M.A. & Caboche, M. Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J. 10, 1911–1918 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Michaud, E.J. et al. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 8, 1463–1472 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Whitelaw, E. & Martin, D.I.K. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat. Genet. 27, 361–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Medstrand, P., Landry, J.R. & Mager, D.L. Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J. Biol. Chem. 276, 1896–1903 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973–1985 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lucas, H., Moore, G., Murphy, G. & Flavell, R.B. Inverted repeats in the long terminal repeats of the wheat retrotransposon Wis 2-1A. Mol. Biol. Evol. 9, 716–728 (1992).

    CAS  PubMed  Google Scholar 

  20. Kashkush, K., Feldman, M. & Levy, A.A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160, 1651–1659 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaked, H., Kashkush, K., Ozkan, H., Feldman, M. & Levy, A.A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13, 1749–1759 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vinogradova, T. et al. Selective differential display of RNAs containing interspersed repeats: analysis of changes in the transcription of HERV-K LTRs in germ cell tumors. Mol. Genet. Genomics 266, 796–805 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Muniz, L.M., Cuadrado, A., Jouve, N. & Gonzalez, J.M. The detection, cloning, and characterisation of WIS 2-1A retrotransposon-like sequences in Triticum aestivum L. and xTriticosecale Wittmack and an examination of their evolution in related Triticeae. Genome 44, 979–989 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Hammond, S.M., Caudy, A.A. & Hannon, G.J. Post-transcriptional gene silencing by double-stranded RNA. Nat. Rev. Genet. 2, 110–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Ozkan, H., Levy, A.A. & Feldman, M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops - Triticum) group. Plant Cell 13, 1735–1747 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Keukeleire, P. et al. Analysis by transposon display of the behavior of the dTph1 element family during ontogeny and inbreeding of petunia hybrida. Mol. Genet. Genomics 265, 72–81 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Ozkan for providing the amphiploid material, C. Melamed-Bessudo for help and advice and V. Walbot and J. Beckmann for critically reading the manuscript. This work was supported by a grant from the US–Israel Binational Science Foundation. K.K. was supported by a doctoral fellowship from the Feinberg Graduate School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avraham A. Levy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashkush, K., Feldman, M. & Levy, A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33, 102–106 (2003). https://doi.org/10.1038/ng1063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing