Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of insulin–like growth factor 2 imprinting in Beckwith–Wiedemann syndrome

Abstract

To study insulin–like growth factor 2 (IGF2) imprinting in BWS (Beckwith–Wiedemann syndrome, an overgrowth syndrome associated with Wilms and other embryonal tumours), we examined allele–specific expression using an Apal polymorphism in the 3′ untranslated region of IGF2. Four of six BWS fibroblast strains demonstrated biallelic expression, as did the tongue tissue from one of these patients. Paternal heterodisomy was excluded for all BWS patients with biallelic expression, suggesting strongly that the BWS phenotype in some patients involves disruption of IGF2 imprinting. Constitutional loss of IGF2 imprinting in a subgroup of our BWS patients, and recent reports of loss of imprinting in sporadic Wilms tumour, further strengthens the view that IGF2 overexpression plays an important role in somatic overgrowth and the development of embryonal tumours.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Junien, C. Beckwith-Wiedemann syndrome, tumorigenesis and imprinting. Curr. Op. genet. Develop. 2, 431–438 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Pettenati, M.J. et al. Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum. Genet. 124, 140–151 (1986).

    Google Scholar 

  3. Wiedemann, H.R. Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome. Eur. J. Pediatr. 14, 129 (1983).

    Article  Google Scholar 

  4. Waziri, M., Patil, S.R., Hanson, J.W. & Batrley. J.A. Abnormality of chromosome 11 in patients with features of Beckwith-Wiedemann syndrome. J. Paed. 102, 873–876 (1983).

    Article  CAS  Google Scholar 

  5. Turleau, C. et al. Trisomy 11p15 and Beckwith-Wiedemann syndrome: A report of two cases. Hum. Genet. 67, 219–221 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Okano, Y. et al. An infant with Beckwith-Wiedemann syndrome and chromosomal duplication 11p13-pter: correlation of symptoms between 11 p trisomy and Beckwith-Wiedemann syndrome Jpn. J. hum. Genet 31, 365–372 (1986).

    CAS  Google Scholar 

  7. Pueschel, S.M. & Padre-Mendoza, T. Chromosome 11 and Beckwith-Wiedemann syndrome. J. Paed. 104, 484–485 (1984).

    Article  CAS  Google Scholar 

  8. Niikawa, N. et al. The Wiedemann-Beckwith syndrome: Pedigree studies on five families with evidence for autosomal dominant inheritance with variable expressivity. Am. J. med. Genet. 24, 41–45 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Moutou, C., Junien, C., Henry, I., Bonaiti-Pellie, C. Beckwith-Wiedemann syndrome: A demonstration of the mechanisms responsible for the excess of transmitting females. J. med. Genet. 29, 217–220 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Best, L.G. & Hoekstra, R.E. Wiedemann-Beckwith Syndrome: Autosomal-Dominant Inheritance in a Family. Am. J. hum. Genet. 9, 291–299 (1981).

    Article  CAS  Google Scholar 

  11. Henry, I. et al. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 351, 665–667 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Henry, I. et al. Somatic mosaicism for partial isodisomy in Weidemann-Beckwith syndrome: A post-fertilization event. Eur. J. hum. Genet. 1, 19–29 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Nystrom, A., Cheetham, J.E., Engstrom, W. & Schofield, P.N. Molecular analysis of patients with Weidemann-Beckwith syndrome II. Paternally derived disomies of chromosome 11. Eur. J. Pediatr. 151, 511–514 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Schneid, H., Vazquet, M.P., Seurin, D., Ie Bouc, Y . Loss of heterozygosity in non-tumoral tissue in two children with Beckwith-Wiedemann syndrome. Growth Regulation 1, 168–170 (1991).

    CAS  PubMed  Google Scholar 

  15. Ping, A.J. et al. Genetic Linkage of Beckwith-Weidemann Syndrome to 11p15. Am. J. hum. Genet. 44, 720–723 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Koufos, A. et al. Familial Wiedemann-Beckwith syndrome and a second Wilms tumour locus both map to 11 p15.5. Am. J. hum. Genet. 44, 711–719 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Weksberg, R. et al. Molecular characterization of Beckwith-Weidemann Syndrome (BWS) patients with partial duplication of 11 p excludes the gene MYOD1 from the BWS region. Genomics 8, 693–698 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Henry, I. et al. Molecular definition of the 11p15.5 region involved in Beckwith-Wiedemann syndrome and probably in predisposition to adrenocortical carcinoma. Hum. Genet. 81, 273–277 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Mannens, M. et al. Characterization of breakpoints associated with the Beckwith-Wiedemann syndrome and aniridia. Evidence for involvement of genomic imprinting in the Beckwith-Wiedemann syndrome. Eur. J. hum. Genet. (in the press).

  20. Weksberg, R. et al. Molecular characterization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum. molec. Genet. 2, 549–556 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Humbel, R. Insulin-like growth factors I and II. Euro. J. Biochem. 190, 445–462 (1990).

    Article  CAS  Google Scholar 

  22. Gray, A. et al. Tissue-specific and developmentally regulated transcription of the insulin-like growth factor 2 gene. DNA 6, 283–295 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Bell, G.I., Gerhard, D.S., Fong, N.M., Sanchez-Pescador, R. & Rall, L.B. Isolation of the human insulin-like growth factor genes: insulin like growth factor II and insulin genes are contiguous. Proc. natn. Acad. Sci. U.S.A. 82, 6450–6454 (1985).

    Article  CAS  Google Scholar 

  24. Reeve, A., Eccles, M., Wilkins, R., Bell, G. & Millow, L. Expression of insulin-like growth factor-ll transcripts in Wilms' tumour. Nature 317, 258–260 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Scott, J. et al. Insulin-like growth factor-ll gene expression in Wilms' tumour and embryonic tissues. Nature 317, 260–262 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. DeChiara, T.M., Robertson, E.J. & Efstratiadias, A. Parental Imprinting of the Mouse Insulin-like Growth Factor II Gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Giannoukakis, N., Deal, C., Pacquette, J., Goodyer, C. & Polychronakos, C. Parental genomic imprinting of the human IGF2 gene. Nature Genet. 4, 98–101 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Ohlsson, R. et al. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Weidemann syndrome. Nature Genet. 4, 94–97 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Ferguson-Smith, A.C., Cattanach, B.M., Barton, S.C., Beechey, C.V., Surani, M.A. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351, 667–670 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature 362, 749–751 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature 362, 747–749 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Little, M., Van Heyningen, V. & Hastie, N. Dads & disomy and disease. Nature 351, 609–610 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Tadokoro, K., Fugii, H., Inoue, T. & Yamada, M. Polymerase chain reaction (PCR) for detection of Apa1 polymorphism at the insulin like growth factor II gene (IGF2). Nuc. Acids Res. 19, 6967 (1991).

    Article  CAS  Google Scholar 

  34. Sasaki, H. et al. Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Genes Dev. 6, 1843–1856 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Y. & Tycko, B. Monoallelic expression of the human H19 gene. Nature Genet. 1, 40–44 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Mannens, M. et al. Molecular nature of genetic changes resulting in loss of heterozygosity of chromosome 11 in Wilms' tumours. Hum. Genet 81, 41–48 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Williams, J.C., Brown, K.W., Mott, M.G., Maitland, N.J. Maternal allele loss in Wilms tumour. Lancet 1, 283–84 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Coppes, M.J. et al. Loss of heterozygosity mapping in Wilms tumour indicates the involvement of three distinct regions and a limited role for non-disjunction or mitotic recombination. Genes Chrom. Can. 5, 326–334 (1992).

    Article  CAS  Google Scholar 

  39. Norman, A.M., Read, A.P., Clayton-Smith, J., Andrews, T., Donnai, D. Recurrent Wiedemann-Beckwith-syndrome with inversion of chromosome (11)(p11.2;p15.5). Am. J. med. Genet 42, 638–641 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Cole, M., myc Oncogene: Its Role in Transformation and Differentiation. Ann. Rev. Genet. 20, 361–384 (1988).

    Article  Google Scholar 

  41. Chao, L-Y. et al. Genetic mosaicism in normal tissues of Wilms' tumour patients. Nature Genet. 3, 127–131 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Zemel, S., Bartolomei, M.S., Tilghman, S.M. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2. Nature Genet. 2, 61–65 (1992).

    Article  CAS  PubMed  Google Scholar 

  43. Ferguson-Smith, A., Sasaki, H., Cattanach, B. & Surani, A. Parental-origin-specific epigenetic modification of the mouse H19gene. Nature 362, 751–755 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Stoger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Chomczynski, P., Sacchi, N. Single step method of RNA isolation by acid quanidinium thiocyanate phenol chloroform extraction. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  PubMed  Google Scholar 

  46. Frohman, M.A., Dush, M.K. & Martin, G.R. Rapid Production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleottide primer. Proc. natn. Acad. Sci. U.S.A. 85, 8998 (1987).

    Article  Google Scholar 

  47. Hoban, P.R. & Kelsey, A.M. Pstl polymorphism within the 3′ untranslated region of the insulin gene detectable by the polymerase chain reaction. Nucl. Acids Res. 19, 4576 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Edwards, A., Civitello, A., Hammond, H.A. & Caskey, T.A. DNA Typing and Genetic Mapping with Trimeric and Tetrameric Tandem Repeats. Am. J. hum. Genet. 49, 746–756 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weksberg, R., Ren Shen, D., Ling Fei, Y. et al. Disruption of insulin–like growth factor 2 imprinting in Beckwith–Wiedemann syndrome. Nat Genet 5, 143–150 (1993). https://doi.org/10.1038/ng1093-143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1093-143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing