Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination

Abstract

Myelination of axons by oligodendrocytes enables rapid impulse propagation in the central nervous system. But long-term interactions between axons and their myelin sheaths are poorly understood. Here we show that Cnp1, which encodes 2′,3′-cyclic nucleotide phosphodiesterase in oligodendrocytes, is essential for axonal survival but not for myelin assembly. In the absence of glial cyclic nucleotide phosphodiesterase, mice developed axonal swellings and neurodegeneration throughout the brain, leading to hydrocephalus and premature death. But, in contrast to previously studied myelin mutants, the ultrastructure, periodicity and physical stability of myelin were not altered in these mice. Genetically, the chief function of glia in supporting axonal integrity can thus be completely uncoupled from its function in maintaining compact myelin. Oligodendrocyte dysfunction, such as that in multiple sclerosis lesions, may suffice to cause secondary axonal loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted inactivation of Cnp1.
Figure 2: Myelin ultrastructure and biochemical composition.
Figure 3: General morphology and microtubular cytoskeleton of wild-type and CNP-deficient oligodendrocytes.
Figure 4: Loss of motor performance and increased mortality of CNP-deficient mice.
Figure 5: Hydrocephalus and neurodegeneration.
Figure 6: Axonal swellings and degeneration.
Figure 7: Transmission electron microscopy.
Figure 8: Reactive gliosis.

Similar content being viewed by others

References

  1. Raine, C.S. Morphology of myelin and myelination. in Myelin 2nd edn. (ed. P. Morell) 1–50 (Plenum, New York, 1984).

    Google Scholar 

  2. Lemke, G. Unwrapping the genes of myelin. Neuron 1, 535–543 (1988).

    Article  CAS  Google Scholar 

  3. Trapp, B.D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).

    Article  CAS  Google Scholar 

  4. Giese, K.P., Martini, R., Lemke, G., Soriano, P. & Schachner, M. Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71, 565–576 (1992).

    Article  CAS  Google Scholar 

  5. Gow, A. et al. CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 99, 649–659 (1999).

    Article  CAS  Google Scholar 

  6. Readhead, C. et al. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell 48, 703–712 (1987).

    Article  CAS  Google Scholar 

  7. Boison, D., Bussow H., D'Urso, D., Muller, H.W. & Stoffel, W. Adhesive properties of proteolipid protein are responsible for the compaction of CNS myelin sheaths. J. Neurosci. 15, 5502–5513 (1995).

    Article  CAS  Google Scholar 

  8. Rosenbluth, J., Stoffel, W. & Schiff, R. Myelin structure in proteolipid protein (PLP)-null mouse spinal cord. J. Comp. Neurol. 371, 336–344 (1996).

    Article  CAS  Google Scholar 

  9. Klugmann, M. et al. Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18, 59–70 (1997).

    Article  CAS  Google Scholar 

  10. Griffiths, I.R. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280, 1610–1613 (1998).

    Article  CAS  Google Scholar 

  11. Sporkel, O., Uschkureit, T., Bussow, H. & Stoffel, W. Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: myelination and development. Glia 37, 19–30 (2002).

    Article  Google Scholar 

  12. Chandross, K.J. et al. Identification and characterization of early glial progenitors using a transgenic selection strategy. J. Neurosci. 19, 759–774 (1999).

    Article  CAS  Google Scholar 

  13. Vogel, U.S. & Thompson, R.J. Molecular structure, localization, and possible functions of the myelin-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase. J. Neurochem. 50, 1667–1677 (1988).

    Article  CAS  Google Scholar 

  14. Sprinkle, T.J. 2′,3′-cyclic nucleotide 3′-phosphodiesterase, an oligodendrocyte-Schwann cell and myelin-associated enzyme of the nervous system. Crit. Rev. Neurobiol. 4, 235–301 (1989).

    CAS  PubMed  Google Scholar 

  15. Tsukada, Y. & Kurihara, T. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: Molecular characterization and possible function significance. in Myelin: Biology and Chemistry (ed. Martenson, R.E) 449–480 (CRC Press, Boca Raton, 1992).

    Google Scholar 

  16. Yu, W.P., Collarini, E.J., Pringle, N.P. & Richardson, W.D. Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12, 1353–1362 (1994).

    Article  CAS  Google Scholar 

  17. Sprinkle, T.J., McMorris, F.A., Yoshino, J. & DeVries, G.H. Differential expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in cultured central, peripheral and extra neural cells. Neurochem. Res. 10, 919–931 (1985).

    Article  CAS  Google Scholar 

  18. Giulian, D. & Moore, S. Identification of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the vertebrate retina. J. Biol. Chem. 255, 5993–5995 (1980).

    CAS  PubMed  Google Scholar 

  19. Scherer, S.S. et al. Differential regulation of 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene during oligodendrocyte development. Neuron 12, 1363–1375 (1994).

    Article  CAS  Google Scholar 

  20. O'Neill, R.C., Minuk, J., Cox, M.E., Braun, P.E. & Gravel, M. CNP2 mRNA directs synthesis of both CNP1 and CNP2 polypeptides. J. Neurosci. Res. 50, 248–257 (1997).

    Article  CAS  Google Scholar 

  21. Agrawal, H.C., Sprinkle, T.J. & Agrawal, D. 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the central nervous system is fatty-acylated by thioester linkage. J. Biol. Chem. 265, 11849–11853 (1990).

    CAS  PubMed  Google Scholar 

  22. Braun, P.E., De Angelis, D., Shtybel, W.W. & Bernier, L. Isoprenoid modification permits 2′,3′-cyclic nucleotide 3′-phosphodiesterase to bind to membranes. J. Neurosci. Res. 30, 540–544 (1991).

    Article  CAS  Google Scholar 

  23. De Angelis, D.A. & Braun, P.E. Isoprenylation of brain 2′,3′-cyclic nucleotide 3′-phosphodiesterase modulates cell morphology. J. Neurosci. Res. 39, 386–397 (1994).

    Article  CAS  Google Scholar 

  24. Nishizawa, Y., Kurihara, T., Masuda, T. & Takahashi, Y. Immunohistochemical localization of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in adult bovine cerebrum and cerebellum. Neurochem. Res. 10, 1107–1118 (1985).

    Article  CAS  Google Scholar 

  25. Kurihara, T. & Tsukada, Y. Regional and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in central nervous system. J. Neurochem. 14, 1167–1174 (1967).

    Article  CAS  Google Scholar 

  26. Braun, P.E., Sandillon, F., Edwards, A., Matthieu, J.M. & Privat, A. Immunocytochemical localization by electron microscopy of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in developing oligodendrocytes of normal and mutant brain. J. Neurosci. 8, 3057–3066 (1988).

    Article  CAS  Google Scholar 

  27. Trapp, B.D., Bernier, L., Andrews, S.B., & Colman, D.R. Cellular and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphodiesterase and its mRNA in the rat central nervous system J. Neurochem. 51, 859–868 (1988).

    Article  CAS  Google Scholar 

  28. Heaton, P.A. & Eckstein, F. Diastereomeric specificity of 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Nucleic. Acids. Res. 24, 850–853 (1996).

    Article  CAS  Google Scholar 

  29. McFerran, B.W. & Burgoyne, R.D. 2′,3′-cyclic nucleotide 3′-phosphodiesterase is associated with mitochondria in diverse adrenal cell types. J. Cell Sci. 110, 2979–2985 (1997).

    CAS  PubMed  Google Scholar 

  30. Laezza, C., Wolff, J. & Bifulco, M. Identification of a 48-kDa prenylated protein that associates with microtubules as 2′,3′-cyclic nucleotide 3′-phosphodiesterase in FRTL-5 Zellen. FEBS Lett. 413, 260–264 (1997).

    Article  CAS  Google Scholar 

  31. Bifulco, M., Laezza, C., Stingo, S. & Wolff, J. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: a membrane-bound, microtubule-associated protein and membrane anchor for tubulin. Proc. Natl. Acad. Sci. USA 99, 1807–1812 (2002).

    Article  CAS  Google Scholar 

  32. De Angelis, D.A., Cox, M., Gao, E. & Braun, P.E. Cellular and molecular characteristics of CNP suggest regulatory mechanism in myelinogenesis. in A Multidisciplinary Approach to Myelin Diseases (ed. Salvati, S.) 49–58 (Plenum, New York, 1994).

    Chapter  Google Scholar 

  33. Gravel, M. et al. Overexpression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in transgenic mice alters oligodendrocyte development and produces aberrant myelination. Mol. Cell Neurosci. 7, 453–466 (1996).

    Article  CAS  Google Scholar 

  34. Yin, X., Peterson, J., Gravel, M., Braun, P.E. & Trapp, B.D. CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J. Neurosci. Res. 50, 238–247 (1997).

    Article  CAS  Google Scholar 

  35. Akagi, K. et al. Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res. 25, 1766–1773 (1997).

    Article  CAS  Google Scholar 

  36. Bennett, S.A., Stevenson, B., Staines, W.A., & Roberts, D.C. Periodic acid-Schiff (PAS)-positive deposits in brain following kainic acid-induced seizures: relationships to fos induction, neuronal necrosis, reactive gliosis, and blood-brain barrier breakdown. Acta Neuropathol. (Berl.) 89, 126–138 (1995).

    Article  CAS  Google Scholar 

  37. Nave, K.-A. Neurological mouse mutants: a molecular genetic analysis of myelin proteins. in Glial Cell Development 2nd edn. (ed. Jessen, J & Richardson, W.) 177–208 (Oxford University Press, New York, 2002).

    Google Scholar 

  38. Boison, D. & Stoffel, W. Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice. Proc. Natl. Acad. Sci. USA 91, 11709–11713 (1994).

    Article  CAS  Google Scholar 

  39. Ballestero, R.P., Dybowski, J.A., Levy, G., Agranoff, B.W. & Uhler, M.D. Cloning and characterization of zRICH, a 2′3′-cyclic nucleotide 3′-phosphodiesterase induced during zebrafish optic nerve regeneration. J. Neurochem. 72, 1362–1371 (1999).

    Article  CAS  Google Scholar 

  40. Lee, J., Gravel, M. & Braun, P.E. Is the interaction of CNP with tubulin and microtubules required for process extension in oligodendrocytes? J. Neurochem. 81 suppl.1, 65 (2002).

    Google Scholar 

  41. Wujek, J.R. et al. Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J. Neuropathol. Exp. Neurol. 61, 23–32 (2002).

    Article  Google Scholar 

  42. Joyner, A.L. Gene Targeting. A Practical Approach. (Oxford University Press, New York, 1993).

    Google Scholar 

  43. Sereda, M. et al. A transgenic rat model of Charcot–Marie–Tooth disease. Neuron 16, 1049–1060 (1996).

    Article  CAS  Google Scholar 

  44. Norton, W.T. & Poduslo, S.E. Myelination in rat brain: method of myelin isolation. J. Neurochem. 21, 749–757 (1973).

    Article  CAS  Google Scholar 

  45. Sogin, D.C. 2′,3′-Cyclic NADP as a substrate for 2′,3′-cyclic nucleotide 3′-phosphohydrolase. J. Neurochem. 27, 1333–1337 (1976).

    Article  CAS  Google Scholar 

  46. Gallyas, F. Silver staining of myelin by means of physical development. Neurol. Res. 1, 203–209 (1979).

    Article  CAS  Google Scholar 

  47. Hotchkiss, R.D. A microchemical reaction resulting in the staining of polysaccharides structure in fixed tissue preparations. Arch. Biochem. 16, 131–141 (1948).

    CAS  PubMed  Google Scholar 

  48. Griffiths, I.R., Duncan, I.D. & McCulloch, M. Shaking pup: a disorder of central myelination in the spaniel dog. II. Ultrastructural observations on the white matter of cervical spinal cord. J. Neurocytol. 10, 847–858 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Bode and C. Stünkel for technical assistance. We also thank A. Berns for lacZ indicator mice. This work was funded by contributions of a Bundesministerium für Bildung und Forschung program (Gentherapie) and a grant from the European Union (COSMO; to K.A.N.), by Action Research and the Wellcome Trust (I.R.G.) and by the Multiple Sclerosis Society of Canada and the Canadian Institutes of Health Research (P.E.B.). C.L.-S. and S.G. received stipends of the Deutsche Forschungsgemeinschaft graduate program in Neurobiology at the University of Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Armin Nave.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lappe-Siefke, C., Goebbels, S., Gravel, M. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33, 366–374 (2003). https://doi.org/10.1038/ng1095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing