Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Notch1 functions as a tumor suppressor in mouse skin

Abstract

Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems1, and aberrant Notch signaling is associated with tumorigenesis2,3,4,5. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin6,7. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1−/− embryos die during gestation8,9,10,11,12. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma–like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed β-catenin signaling in cells that should normally undergo differentiation. Enhanced β-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of β-catenin, indicating that Notch1 can inhibit β-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hyperplasia of the corneal epithelium induced by inactivation of Notch1 in adult mice.
Figure 2: Formation of skin tumors induced by inactivation of Notch1 in adult mice.
Figure 3: Notch1 deficiency facilitates tumorigenicity.
Figure 4: Upregulation of Shh target genes in spontaneous skin tumors of Notch1−/− mice and induced Notch1−/− keratinocytes.
Figure 5: Notch1 deficiency results in increased β-catenin signaling.

Similar content being viewed by others

References

  1. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Ellisen, L.W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Jhappan, C. et al. Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev. 6, 345–355 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Zagouras, P., Stifani, S., Blaumueller, C.M., Carcangiu, M.L. & Artavanis-Tsakonas, S. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl. Acad. Sci. USA 92, 6414–6418 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Capobianco, A.J., Zagouras, P., Blaumueller, C.M., Artavanis-Tsakonas, S. & Bishop, J.M. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol. Cell. Biol. 17, 6265–6273 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lowell, S., Jones, P., Le Roux, I., Dunne, J. & Watt, F.M. Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 10, 491–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Rangarajan, A. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20, 3427–3436 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conlon, R.A., Reaume, A.G. & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development 121, 1533–1545 (1995).

    CAS  PubMed  Google Scholar 

  9. Swiatek, P.J., Lindsell, C.E., del Amo, F.F., Weinmaster, G. & Gridley, T. Notch1 is essential for postimplantation development in mice. Genes Dev. 8, 707–719 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Xue, Y. et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum. Mol. Genet. 8, 723–730 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Hrabe de Angelis, M., McIntyre, J. 2nd & Gossler, A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386, 717–721 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Hamada, Y. et al. Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development 126, 3415–3424 (1999).

    CAS  PubMed  Google Scholar 

  13. Pear, W.S. et al. Exclusive development of T-cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Uyttendaele, H. et al. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122, 2251–2259 (1996).

    CAS  PubMed  Google Scholar 

  15. Milner, L.A. & Bigas, A. Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood 93, 2431–2448 (1999).

    CAS  PubMed  Google Scholar 

  16. Missero, C., Di Cunto, F., Kiyokawa, H., Koff, A. & Dotto, G.P. The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression. Genes Dev. 10, 3065–3075 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Philipp, J., Vo, K., Gurley, K.E., Seidel, K. & Kemp, C.J. Tumor suppression by p27Kip1 and p21Cip1 during chemically induced skin carcinogenesis. Oncogene 18, 4689–4698 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Weinberg, W.C. et al. Genetic deletion of p21WAF1 enhances papilloma formation but not malignant conversion in experimental mouse skin carcinogenesis. Cancer Res. 59, 2050–2054 (1999).

    CAS  PubMed  Google Scholar 

  19. Topley, G.I., Okuyama, R., Gonzales, J.G., Conti, C. & Dotto, G.P. p21(WAF1/Cip1) functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential. Proc. Natl. Acad. Sci. USA 96, 9089–9094 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Callahan, C.A. & Oro, A.E. Monstrous attempts at adnexogenesis: regulating hair follicle progenitors through Sonic hedgehog signaling. Curr. Opin. Genet. Dev. 11, 541–546 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Dahmane, N. et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128, 5201–5212 (2001).

    CAS  PubMed  Google Scholar 

  22. Grachtchouk, M. et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat. Genet. 24, 216–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Hennings, H. et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19, 245–254 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. van Noort, M., Meeldijk, J., van der Zee, R., Destree, O. & Clevers, H. Wnt signaling controls the phosphorylation status of β-catenin. J. Biol. Chem. 277, 17901–17905 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  26. Hovanes, K. et al. β-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat. Genet. 28, 53–57 (2001).

    CAS  PubMed  Google Scholar 

  27. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Indra, A.K. et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 27, 4324–4327 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He, T.C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hui, C.C., Slusarski, D., Platt, K.A., Holmgren, R. & Joyner, A.L. Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectoderm- and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev. Biol. 162, 402–413 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Badic, E. Säuberly and J. Bamat for histological analysis; B. Sordat, M. Guitard and F. Sierro for technical help; P. Chambon and D. Metzger for the K5–cre–ERT transgenic mice; and T. Jacks and A. Trumpp for the Cdnk1a−/− mice. This work was supported by grants from the Swiss Cancer League/Oncosuisse (to F.R.), the National Cancer Institute of Canada (to C.C.H.) and the US National Institutes of Health (to G.P.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddy Radtke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolas, M., Wolfer, A., Raj, K. et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33, 416–421 (2003). https://doi.org/10.1038/ng1099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1099

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing