Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autosomal dominant hypocalcaemia caused by a Ca2+-sensing receptor gene mutation

Abstract

Defects in the human Ca2+-sensing receptor gene have recently been shown to cause familial hypocalciuric hypercalcaemia and neonatal severe hyperparathyroidism. We now demonstrate that a missense mutation (Glu128Ala) in this gene causes familial hypocalcaemia in affected members of one family. Xenopus oocytes expressing the mutant receptor exhibit a larger increase in inositol 1,4,5-triphosphate in response to Ca2+than oocytes expressing the wild-type receptor. We conclude that this extracellular domain mutation increases the receptor's activity at low Ca2+ concentrations, causing hypocalcaemia in patients heterozygous for such a mutation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, E.M., Extracelluar Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other tons as extracellular (first) messengers. Physiol. Rev. 71, 371–411 (1991).

    Article  CAS  Google Scholar 

  2. Brown, E.M. et al. Cloning, expression, and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366, 575–580 (1993).

    Article  CAS  Google Scholar 

  3. Chou, Y.-H.W. et al. The gene responsible for familial hypocalciuric hypercalcemia maps to chromosome 3q in four unrelated families. Nature Genet. 1, 295–299 (1992).

    Article  CAS  Google Scholar 

  4. Pollak, M.R. et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75, 1297–1303 (1993).

    Article  CAS  Google Scholar 

  5. Pollak, M.R. et al. Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism: The effects of mutant gene dosage on phenotype. J. clin. Invest. 93, 1108–1112 (1994).

    Article  CAS  Google Scholar 

  6. Berridge, M.J. Inositol triphosphate and calcium signalling. Nature 361, 315–325 (1993).

    Article  CAS  Google Scholar 

  7. Khosla, S. et al. Calcium infusion suggests a “set-point” abnormality of parathyroid gland function in familial benign hypercalcemia and more complex disturbances in primary hyperparathyroidism. J. clin. Endocrinol. Metab. 76, 715–720 (1993).

    CAS  PubMed  Google Scholar 

  8. Marx, S.J. et al. Secretory dysfunction in parathyroid cells from a neonate with severe primary hyperparathyroidism. J. clin. Endocrinol. Metab. 62, 445–449 (1986).

    Article  CAS  Google Scholar 

  9. Leftkowitz, R.J. Turned on to ill effect. Nature 365, 603–604 (1993).

    Article  Google Scholar 

  10. Hunter, A.G.W., Heick, H., Poznanski, W.J. & McLaine, P.N. Autosomal dominant hypoparathyroidism: a proband with concurrent nephrogenic diabetes insipidus. J. Med. Genet. 18, 431–435 (1981).

    Article  CAS  Google Scholar 

  11. Ho, K. et al. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362, 31–38 (1993).

    Article  CAS  Google Scholar 

  12. Parker, I. & Yao, Y. Relation between intracellular Ca2+-signals and Ca2+-activated CI− current in Xenopus oocytes. Cell Calcium 15, 276–288 (1994).

    Article  CAS  Google Scholar 

  13. Parma, J. et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 65, 649–651 (1993).

    Article  Google Scholar 

  14. Shenker, A. et al. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 653, 652–654 (1993).

    Article  Google Scholar 

  15. Sherwood, L.M. Hypoparathyroidism. in Primer on the metabolic bone diseases and disorders of mineral metabolism (Raven Press, New York, 1993).

    Google Scholar 

  16. Shane, E., Hypocalcaemia: Pathogenesis, differential diagnosis, and management. In Primer on the metabolic bone diseases and disorders of mineral metabolism (Raven Press, New York, (1993).

    Google Scholar 

  17. Ott, J. Analysis of human genetic linkage. (Johns Hopkins University Press, Baltimore, (1991).

    Google Scholar 

  18. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  Google Scholar 

  19. Lathrop, G.M. et al. Strategies for multilocus linkage analysis in humans. Proc. natn. Acad. Sci. U.S.A. 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  20. Gamba, G. et al. Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc. natn. Acad. Sci. U.S.A. 90, 2749–2753 (1993).

    Article  CAS  Google Scholar 

  21. Ausubel, F.M. et al. Current protocols in molecular biology. (Greene Publishing, NewYork.(1989).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollak, M., Brown, E., Estep, H. et al. Autosomal dominant hypocalcaemia caused by a Ca2+-sensing receptor gene mutation. Nat Genet 8, 303–307 (1994). https://doi.org/10.1038/ng1194-303

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1194-303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing