Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31

Abstract

The whirler mouse mutant (wi) does not respond to sound stimuli, and detailed ultrastructural analysis of sensory hair cells in the organ of Corti of the inner ear indicates that the whirler gene encodes a protein involved in the elongation and maintenance of stereocilia in both inner hair cells (IHCs) and outer hair cells (OHCs). BAC-mediated transgene correction of the mouse phenotype and mutation analysis identified the causative gene as encoding a novel PDZ protein called whirlin. The gene encoding whirlin also underlies the human autosomal recessive deafness locus DFNB31. In the mouse cochlea, whirlin is expressed in the sensory IHC and OHC stereocilia. Our findings suggest that this novel PDZ domain–containing molecule acts as an organizer of submembranous molecular complexes that control the coordinated actin polymerization and membrane growth of stereocilia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical and genetic map of the whirler non-recombinant region.
Figure 2: Characterization of gene 6, encoding whirlin.
Figure 3: Phenotypic rescue of the whirler phenotype by BAC279.
Figure 4: Localization of whirlin in the mouse inner ear.
Figure 5: Transfection of HeLa cells with the full-length cDNA encoding whirlin.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hudspeth, A.J. How hearing happens. Neuron 19, 947–950 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Tilney, L.G, Tilney, M.S. & DeRosier, D.J. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu. Rev. Cell. Biol. 8, 257–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Kaltenbach, J.A. & Falzarano, P.R. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti. J. Comp. Neurol. 340, 87–97 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Kollmar, R. Who does the hair cell's 'do? Rho GTPases and hair-bundle morphogenesis. Curr. Opin. Neurobiol. 9, 394–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Muller, U. & Littlewood-Evans, A. Mechanisms that regulate mechanosensory hair cell differentiation. Trends Cell Biol. 11, 334–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Gibson, F. et al. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374, 62–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Avraham, K.B. et al. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat. Genet. 11, 369–375 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Probst, F.J. et al. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280, 1444–1447 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Di Palma, F. et al. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat. Genet. 27, 103–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Alagramam, K.N. et al. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum. Mol. Genet. 10, 1709–1718 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Littlewood-Evans, A. & Muller, U. Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin α8β1. Nat. Genet. 24, 424–428 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Zheng, L. et al. The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102, 377–385 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gong, T.W. et al. Identification of genes expressed after noise exposure in the chick basilar papilla. Hear. Res. 96, 20–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Holme, R.H., Kiernan, B.W., Brown, S.D. & Steel, K.P. The elongation of hair cell stereocilia is defective in the mouse mutant whirler. J. Comp. Neurol. 450, 94–102 (2002).

    Article  PubMed  Google Scholar 

  15. Petit, C., Levilliers, J., Marlin, S. & Hardelin, J.-P. Hereditary hearing loss. in The Metabolic and Molecular Bases of Inherited Disease vol. IV (eds. Scriver, C.R., Beaudet A.L., Sly, W.S. & Valle, D.) 6281–6328 (McGraw-Hill, 2001).

    Google Scholar 

  16. Parkinson, N. & Brown, S.D. Focusing on the genetics of hearing: you ain't heard nothin' yet. Genome Biol. 3, 2006.1–2006.6 (2002).

    Article  Google Scholar 

  17. Mustapha, M. et al. DFNB31, a recessive form of sensorineural hearing loss, maps to chromosome 9q32–34. Eur. J. Hum. Genet. 10, 210–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Rogers, M.J. et al. Genetic mapping of the whirler mutation. Mamm. Genome 10, 513–519 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Paige, A.J. et al. A deletion on chromosome 4 cosegregates with the whirler deafness mutation: exclusion of Orm1 as a candidate. Mamm. Genome 11, 51–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Mallon, A.M. et al. Comparative genome sequence analysis of the Bpa/Str region in mouse and man. Genome Res. 10, 758–775 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siddiqa, A. et al. Regulation of CD40 and CD40 ligand by the AT-hook transcription factor AKNA. Nature 410, 383–387 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Verpy, E. et al. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat. Genet. 26, 51–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Bitner-Glindzicz, M. et al. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nat. Genet. 26, 56–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Ouyang, X.M. et al. Mutations in the alternatively spliced exons of USH1C cause non-syndromic recessive deafness. Hum. Genet. 111, 26–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Ahmed, Z.M. et al. Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC. Hum. Genet. 110, 527–531 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Baumann, H. & Berger, F.G. Genetics and evolution of the acute phase proteins in mice. Mol. Gen. Genet. 201, 505–512 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Boëda, B. et al. Myosin VIIA, harmonin, and cadherin23, three Usher I gene products cooperate to shape the sensory hair cell bundle. EMBO J. 21, 6689–6699 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ponting, C.P., Phillips, C., Davies, K.E. & Blake, D.J. PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 19, 469–479 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Fanning, A.S. & Anderson, J.M. PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J. Clin. Invest. 103, 767–772 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garner, C.C., Nash, J. & Huganir, R.L. PDZ domains in synapse assembly and signalling. Trends Cell Biol. 10, 274–280 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Harris, B.Z. & Lim, W.A. Mechanism and role of PDZ domains in signalling complex assembly. J. Cell Sci. 114, 3219–3231 (2001).

    CAS  PubMed  Google Scholar 

  33. Siemens, J. et al. The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc. Natl. Acad. Sci. USA 99, 14946–14951 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kay, B.K., Williamson, M.P. & Sudol, M. The importance of being proline: the interaction of proline-rich motifs in signalling proteins with their cognate domains. FASEB J. 14, 231–241 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Sheng, M. & Kim, E. The Shank family of scaffold proteins. J. Cell Sci. 113, 1851–1856 (2000).

    CAS  PubMed  Google Scholar 

  36. Lue, R.A., Marfatia, S.M., Branton, D. & Chishti, A.H. Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Proc. Natl. Acad. Sci. USA 91, 9818–9822 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reczek, D., Berryman, M. & Bretscher, A. Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J. Cell Biol. 139, 169–179 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bretscher, A. Regulation of cortical structure by the ezrin-radixin-moesin protein family. Curr. Opin. Cell Biol. 11, 109–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Shaw, R.J., Henry, M., Solomon, F. & Jacks, T. RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol. Biol. Cell 9, 403–419 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bonfield, J.K., Smith, K. & Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 23, 4992–4999 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taudien, S. et al. RUMMAGE—a high-throughput sequence annotation system. Trends Genet. 16, 519–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Self, T. et al. Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125, 557–566 (1998).

    CAS  PubMed  Google Scholar 

  43. Zwaenepoel, I. et al. Ontoancorin, an inner ear protein restricted to the interface between the apical surface of sensory epithelia and their overlying acellular gels, is defective in autosomal recessive deafness DNB22. Proc. Natl. Acad. Sci. USA 99, 6240–6245 (2003).

    Article  Google Scholar 

  44. Schaeren-Wiemers, N. & Gerfin-Moser, A. A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxygenin-labelled cRNA probes. Histochemistry 100, 431–440 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Kussel-Andermann, P. et al. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J. 19, 6020–6029 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Hardelin, J. Levilliers and S. Cure for critical reading of the manuscript. The confocal microscope was purchased with a donation from Marcel and Liliane Pollack. This work was supported by the Medical Research Council, Defeating Deafness, a grant from the European Community, the Foundation Srittmatter (Retina France) and the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Petit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mburu, P., Mustapha, M., Varela, A. et al. Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 34, 421–428 (2003). https://doi.org/10.1038/ng1208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing