Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis

Abstract

Nephronophthisis (NPHP), a group of autosomal recessive cystic kidney disorders, is the most common genetic cause of progressive renal failure in children and young adults1. NPHP may be associated with Leber congenital amaurosis, tapeto-retinal degeneration, cerebellar ataxia, cone-shaped epiphyses, congenital oculomotor apraxia and hepatic fibrosis2,3,4,5,6. Loci associated with an infantile type of NPHP on 9q22–q31 (NPHP2), juvenile types of NPHP on chromosomes 2q12–q13 (NPHP1) and 1p36 (NPHP4) and an adolescent type of NPHP on 3q21–q22 (NPHP3) have been mapped7,8,9,10. NPHP1 and NPHP4 have been identified11,12,13, and interaction of the respective encoded proteins nephrocystin and nephrocystin-4 has been shown13. Here we report the identification of NPHP3, encoding a novel 1,330-amino acid protein that interacts with nephrocystin. We describe mutations in NPHP3 in families with isolated NPHP and in families with NPHP with associated hepatic fibrosis or tapeto-retinal degeneration. We show that the mouse ortholog Nphp3 is expressed in the node, kidney tubules, retina, respiratory epithelium, liver, biliary tract and neural tissues. In addition, we show that a homozygous missense mutation in Nphp3 is probably responsible for the polycystic kidney disease (pcy) mouse phenotype14. Interventional studies in the pcy mouse have shown beneficial effects by modification of protein intake and administration of methylprednisolone15,16,17, suggesting therapeutic strategies for treating individuals with NPHP3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic region and gene structure of NPHP3 and putative protein structure of NPHP3.
Figure 2: Expression analysis of human NPHP3 and its mouse ortholog Nphp3.
Figure 3: Interaction of NPHP3 and NPHP1.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hildebrandt, F. & Omran, H. New insights: nephronophthisis/medullary cystic kidney disease. Ped. Nephrol. 16, 168–176 (2001).

    Article  CAS  Google Scholar 

  2. Mainzer, F., Saldino, R.M., Ozonoff, M.B. & Minagi, H. Familial nephropathy associated with retinitis pigmentosa, cerebellar ataxia and skeletal abnormalities. Am. J. Med. 49, 556–562 (1970).

    Article  CAS  Google Scholar 

  3. Boichis, H., Passwell, J., David, R. & Miller, H. Congenital hepatic fibrosis and nephronophthisis: a family study. Q. J. Med. 42, 221–233 (1973).

    CAS  PubMed  Google Scholar 

  4. Løken, A.C., Hanssen, O., Halvorsen, S. & Jølster, N.J. Hereditary renal dysplasia and blindness. Acta Paediatr. 50, 177–184 (1961).

    Article  Google Scholar 

  5. Senior, B., Friedmann, A.I. & Braudo, J.L. Juvenile familial nephropathy with tapetoretinal degeneration: a new oculo-renal dystrophy. Am. J. Opthalmol. 52, 625–633 (1961).

    Article  CAS  Google Scholar 

  6. Betz, R. et al. Children with ocular motor apraxia type Cogan carry deletions in the gene (NPHP1) for juvenile nephronophthisis. J. Pediatr. 136, 828–831 (2000).

    CAS  PubMed  Google Scholar 

  7. Haider, N.B. et al. A Bedouin kindred with infantile nephronophthisis demonstrates linkage to chromosome 9 by homozygosity mapping. Am. J. Hum. Genet. 63, 1404–1410 (1998).

    Article  CAS  Google Scholar 

  8. Antignac, C. et al. A gene for familial juvenile nephronophthisis (recessive medullary cystic kidney disease) maps to chromosome 2p. Nat. Genet. 3, 342–345 (1993).

    Article  CAS  Google Scholar 

  9. Schuermann, M.J. et al. Mapping of gene loci for nephronophthisis type 4 and Senior-Løken syndrome to chromosome 1p36. Am. J. Hum. Genet. 70, 1240–1246 (2002).

    Article  CAS  Google Scholar 

  10. Omran, H. et al. Identification of a new gene locus for adolescent nephronophthisis, on chromosome 3q22 in a large Venezuelan pedigree. Am. J. Hum. Genet. 66, 118–127 (2000).

    Article  CAS  Google Scholar 

  11. Hildebrandt, F. et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat. Genet. 17, 149–153 (1997).

    Article  CAS  Google Scholar 

  12. Otto, E. et al. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am. J. Hum. Genet. 71, 1240–1246 (2002).

    Article  Google Scholar 

  13. Mollet, G. et al. The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nat. Genet. 32, 300–305 (2002).

    Article  CAS  Google Scholar 

  14. Takahashi, H. et al. A new mouse model of genetically transmitted polycystic kidney disease. J. Urol. 135, 1280–1283 (1986).

    Article  CAS  Google Scholar 

  15. Aukema, H.M. et al. Effects of dietary protein restriction and oil type on the early progression of murine polycystic kidney disease. Kidney Int. 42, 837–842 (1992).

    Article  CAS  Google Scholar 

  16. Tomobe, K. Effect of dietary soy protein and genistein on disease progression in mice with polycystic kidney disease. Am. J. Kidney Dis. 31, 55–61 (1998).

    Article  CAS  Google Scholar 

  17. Gattone, V.H. et al. Methylprednisolone retards the progression of inherited polycystic kidney disease in rodents. Am. J. Kidney Dis. 25, 302–313 (1995).

    Article  CAS  Google Scholar 

  18. Omran, H. et al. Identification of a gene locus for Senior-Løken Syndrome in the region of the nephronophthisis type 3 Gene. J. Am. Soc. Nephrol. 13, 75–79 (2002).

    CAS  PubMed  Google Scholar 

  19. Volz, A., Melkaoui, R., Hildebrandt, F. & Omran, H. Candidate gene analysis of KIAA0678 encoding a DnaJ-like protein for adolescent nephronophthisis and Senior-Løken syndrome type 3. Cytogenet. Genome Res. 97, 163–166 (2002).

    Article  CAS  Google Scholar 

  20. Omran, H. et al. Evidence for further genetic heterogeneity in nephronophthisis. Nephrol. Dial. Transplant. 16, 755–758 (2001).

    Article  CAS  Google Scholar 

  21. Omran, H. et al. Human adolescent nephronophthisis: gene locus synteny with polycystic kidney disease in pcy mice. J. Am. Soc. Nephrol. 12, 107–113 (2001).

    CAS  PubMed  Google Scholar 

  22. Pazour, G.J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).

    Article  CAS  Google Scholar 

  23. Murcia, N.S. et al. The Oak Ridge polycystic kidney (orpk) disease gene is required for left-right axis determination. Development 127, 2347–2355 (2000).

    CAS  PubMed  Google Scholar 

  24. Moyer, J.H. et al. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264, 1329–1333 (1994).

    Article  CAS  Google Scholar 

  25. Pennekamp, P. et al. The ion channel polycystin-2 is required for left-right axis determination in mice. Curr. Biol. 12, 938–943 (2002).

    Article  CAS  Google Scholar 

  26. Pazour, G.J. et al. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 12, R378–R380 (2002).

    Article  CAS  Google Scholar 

  27. Erck, C., Frank, R. & Wehland, J. Tubulin-tyrosine ligase, a long lasting enigma. Neurochem. Res. 25, 5–10 (2000).

    Article  CAS  Google Scholar 

  28. Benzing, T. et al. Nephrocystin interacts with Pyk2, p130(Cas), and tensin and triggers phosphorylation of Pyk2. Proc. Natl. Acad. Sci. USA 98, 9784–9789 (2001).

    Article  CAS  Google Scholar 

  29. Donaldson, J.C. et al. Crk-associated substrate p130(Cas) interacts with nephrocystin and both proteins localize to cell-cell contacts of polarized epithelial cells. Exp. Cell Res. 256, 168–178 (2000).

    Article  CAS  Google Scholar 

  30. Nauli, S.M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the affected individuals and their families for their participation in this study, R. Melkaoui and M. Petry for technical assistance and B. Kränzlin for microscopic photographs. This work was supported by the Italian Association for Leber's Congenital Amaurosis and by grants from the German Research Foundation (H.O. and A.K.), Zentrum für klinische Forschung Freiburg (H.O.) and the F.G. L. Huetwell fund (F.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heymut Omran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olbrich, H., Fliegauf, M., Hoefele, J. et al. Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet 34, 455–459 (2003). https://doi.org/10.1038/ng1216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing