Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray

Abstract

We describe a new synthetic lethality analysis by microarray (SLAM) technique that uses 4,600 Saccharomyces cerevisiae haploid deletion mutants with molecular 'bar codes' (TAGs). We used SGS1 and SRS2, two 3′→5′ DNA helicase genes, as 'queries' to identify their redundant and unique biological functions. We introduced these 'query mutations' into a haploid deletion pool by integrative transformation to disrupt the query gene in every cell, generating a double mutant pool. Optimization of integrative transformation efficiency was essential to the success of SLAM. Synthetic interactions defined a DNA helicase genetic network and predicted a role for SRS2 in processing damaged replication forks but, unlike SGS1, not in rDNA replication, DNA topology or lagging strand synthesis. SGS1 and SRS2 have synthetic defects with MRC1 but not RAD9, suggesting that SGS1 and SRS2 function in a parallel pathway with MRC1 to transduce the DNA replication stress signal to the general DNA damage checkpoint pathway. Both helicase genes have rad51-reversible synthetic defects with 5′→3′ DNA helicase RRM3, suggesting that RRM3 helps prevent formation of toxic recombination intermediates. SLAM detects synthetic lethality efficiently and ranks candidate genetic interactions, making it an especially useful method.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Parallel analysis of YKO strains for synthetic lethality with sgs1Δ.
Figure 2: Microarray analysis of mutants.
Figure 3: rnh35Δ, hst3Δ, ydr279wΔ, ylr154cΔ and ygr081cΔ/slx9Δ have fitness defects with sgs1Δ.
Figure 4: Random spore analysis of fitness defects.
Figure 5: Genetic interaction map for SGS1, SRS2 and RAD27.

Similar content being viewed by others

References

  1. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  2. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  Google Scholar 

  3. Dobzhansky, T. Genetics of natural populations. XIII. Recombination and variability in populations of Drosophila pseudoobscura. Genetics 31, 269–290 (1946).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Novick, P., Osmond, B.C. & Botstein, D. Suppressors of yeast actin mutations. Genetics 121, 659–674 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bender, A. & Pringle, J.R. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 1295–1305 (1991).

    Article  CAS  Google Scholar 

  6. Hartman, J., Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science 291, 1001–1004 (2001).

    Article  CAS  Google Scholar 

  7. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  Google Scholar 

  8. Ooi, S.L., Shoemaker, D.D. & Boeke, J.D. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294, 2552–2556 (2001).

    Article  CAS  Google Scholar 

  9. Rong, L. & Klein, H.L. Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268, 1252–1259 (1993).

    CAS  PubMed  Google Scholar 

  10. Lu, J. et al. Human homologues of yeast helicase. Nature 383, 678–679 (1996).

    Article  CAS  Google Scholar 

  11. Bennett, R.J., Sharp, J.A. & Wang, J.C. Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J. Biol. Chem. 273, 9644–9650 (1998).

    Article  CAS  Google Scholar 

  12. Hickson, I.D. RecQ helicases: caretakers of the genome. Nat. Rev. Cancer 3, 169–178 (2003).

    Article  CAS  Google Scholar 

  13. Aboussekhra, A. et al. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 17, 7211–7219 (1989).

    Article  CAS  Google Scholar 

  14. Lee, S.K., Johnson, R.E., Yu, S.L., Prakash, L. & Prakash, S. Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science 286, 2339–2342 (1999).

    Article  CAS  Google Scholar 

  15. Aguilera, A. & Klein, H.L. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119, 779–790 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gangloff, S., Soustelle, C. & Fabre, F. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat. Genet. 25, 192–194 (2000).

    Article  CAS  Google Scholar 

  17. Yamagata, K. et al. Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc. Natl. Acad. Sci. USA 95, 8733–8738 (1998).

    Article  CAS  Google Scholar 

  18. Aylon, Y., Liefshitz, B., Bitan-Banin, G. & Kupiec, M. Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 1403–1417 (2003).

    Article  CAS  Google Scholar 

  19. Vaze, M.B. et al. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell 10, 373–385 (2002).

    Article  CAS  Google Scholar 

  20. Frei, C. & Gasser, S.M. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 14, 81–96 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bennett, C.B. et al. Genes required for ionizing radiation resistance in yeast. Nat. Genet. 29, 426–434 (2001).

    Article  CAS  Google Scholar 

  22. Mankouri, H.W., Craig, T.J. & Morgan, A. SGS1 is a multicopy suppressor of srs2: functional overlap between DNA helicases. Nucleic Acids Res. 30, 1103–1113 (2002).

    Article  CAS  Google Scholar 

  23. Mullen, J.R., Kaliraman, V., Ibrahim, S.S. & Brill, S.J. Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 157, 103–118 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Debrauwere, H., Loeillet, S., Lin, W., Lopes, J. & Nicolas, A. Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc. Natl. Acad. Sci. USA 98, 8263–8269 (2001).

    Article  CAS  Google Scholar 

  25. Ogawa, T. et al. RecA-like recombination proteins in eukaryotes: functions and structures of RAD51 genes. Cold Spring Harb. Symp. Quant. Biol. 58, 567–576 (1993).

    Article  CAS  Google Scholar 

  26. Sung, P., Trujillo, K.M. & Van Komen, S. Recombination factors of Saccharomyces cerevisiae. Mutat. Res. 451, 257–275 (2000).

    Article  CAS  Google Scholar 

  27. Fabre, F., Chan, A., Heyer, W.D. & Gangloff, S. Alternate pathways involving Sgs1/Top3, Mus81/ Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl. Acad. Sci. USA 99, 16887–16892 (2002).

    Article  CAS  Google Scholar 

  28. Morrow, D.M., Connelly, C. & Hieter, P. “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147, 371–382 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Alcasabas, A.A. et al. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat. Cell Biol. 3, 958–965 (2001).

    Article  CAS  Google Scholar 

  30. Qiu, J., Qian, Y., Frank, P., Wintersberger, U. & Shen, B. Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease. Mol. Cell. Biol. 19, 8361–8371 (1999).

    Article  CAS  Google Scholar 

  31. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  32. Schmidt, K.H., Derry, K.L. & Kolodner, R.D. Saccharomyces cerevisiae RRM3, a 5′ to 3′ DNA helicase, physically interacts with proliferating cell nuclear antigen. J. Biol. Chem. 277, 45331–45337 (2002).

    Article  CAS  Google Scholar 

  33. Ivessa, A.S., Zhou, J.Q. & Zakian, V.A. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100, 479–489 (2000).

    Article  CAS  Google Scholar 

  34. Ivessa, A.S., Zhou, J.Q., Schulz, V.P., Monson, E.K. & Zakian, V.A. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev. 16, 1383–1396 (2002).

    Article  CAS  Google Scholar 

  35. Hughes, T.R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347 (2001).

    Article  CAS  Google Scholar 

  36. Breitkreutz, B.J., Stark, C. & Tyers, M. Osprey: a network visualization system. Genome Biol. 4, R22 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Crouch and H. Jeong for sharing unpublished results; M. Lee and S. Sookhai-Mahadeo for optimizing the long range PCR; S. Sookhai-Mahadeo, A. IJpma and M. Lee for help with deletion pool construction; C. Boone and A. Tong for strains and discussion; G. Ira and R. Rothstein for discussions and reading the manuscripts; R. Irizarry and J. Bader for discussions on statistical aspects and network analysis; and E. Bolton, M. Lee, X. Pan, F. Spencer and D. Yuan for discussions. This work was supported by a grant from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jef D Boeke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ooi, S., Shoemaker, D. & Boeke, J. DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat Genet 35, 277–286 (2003). https://doi.org/10.1038/ng1258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing