Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS)

Abstract

Pendred syndrome is a recessively inherited disorder with the hallmark features of congenital deafness and thyroid goitre. By some estimates, the disorder may account for upwards of 10% of hereditary deafness. Previous genetic linkage studies localized the gene to a broad interval on human chromosome 7q22–31.1. Using a positional cloning strategy, we have identified the gene (PDS) mutated in Pendred syndrome and found three apparently deleterious mutations, each segregating with the disease in the respective families in which they occur. PDS produces a transcript of approximately 5 kb that was found to be expressed at significant levels only in the thyroid. The predicted protein, pendrin, is closely related to a number of known sulphate transporters. These studies provide compelling evidence that defects in pendrin cause Pendred syndrome thereby launching a new area of investigation into thyroid physiology, the pathogenesis of congenital deafness and the role of altered sulphate transport in human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pendred, V. Deaf-mutism and goitre. Lancet ii, 532 (1896).

    Article  Google Scholar 

  2. Reardon, W. & Trembath, R.C. Pendred syndrome. J. Med. Genet. 33, 1037–1040 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reardon, W. et al. Pendred syndrome: 100 years of underascertainment. Q. J. Med. 90, 443–447 (1997).

    Article  CAS  Google Scholar 

  4. Fraser, G.R. Association of congenital deafness with goitre (Pendred's syndrome): a study of 207 families. Ann. Hum. Genet. 28, 201–249 (1965).

    Article  CAS  PubMed  Google Scholar 

  5. Batsakis, J.G. & Nishiyama, R.H. Deafness with sporadic goiter. Arch. Otolaryngol. 76, 401–406 (1962).

    Article  CAS  PubMed  Google Scholar 

  6. Ilium, P., Kiaer, H.W., Hvidberg-Hansen, J. & Sondergaard, G. Fifteen cases of Pendred's syndrome: congenital deafness and sporadic goiter. Arch. Otolaryngol. 96, 297–304 (1972).

    Article  Google Scholar 

  7. Johnsen, T., Sorensen, M.S., Feldt-Rasmussen, U. & Friis, J. The variable intrafamiliar expressivity in Pendred's syndrome. Clin. Otolaryngol. 14, 395–399 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Mondini, C. Anatomia surdi nati sectio: De Boroniensi scientarium et artium institute atque acedemia commnetarii. Bononiae 7, 419–431 (1791).

    Google Scholar 

  9. Johnsen, T., Jorgensen, M.B. & Johnsen, S. Mondini cochlea in Pendred's syndrome; a histological study. Acta Oto-Laryngol. 102, 239–247 (1986).

    Article  CAS  Google Scholar 

  10. Johnsen, T., Larsen, C., Friis, J. & Hougaard-Jensen, F. Pendred's syndrome: acoustic, vestibular and radiological findings in 17 unrelated patients. J. Laryngol. Otol. 101, 1187–1192 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Sheffield, V.C. et al. Pendred syndrome maps to chromosome 7q21–34 and is caused by an intrinsic defect in thyroid iodine organification. Nature Genet. 12, 424–426 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Trotter, W.R. The association of deafness with thyroid dysfunction, fir. Med. Bull. 16, 92–98 (1960).

    Article  CAS  Google Scholar 

  13. Bradley, D.J., Towle, H.C. & Young, W.S. 3rd. Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc. Natl. Acad. Sci. USA 91, 439–443 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van Middlesworth, L. & Morris, C.H. Audiogenic seizures and cochlear damage in rats after perinatal antithyroid treatment. Endocrinology 106, 1686–1690 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. O'Malley, B.W. Jr., Li, D. & Turner, D.S. Hearing loss and cochlear abnormalities in the congenital hypothyroid (hyt/hyt) mouse. Hear. Res. 88, 181–189 (1995).

    Article  PubMed  Google Scholar 

  16. Deol, M.S. An experimental approach to the understanding and treatment of hereditary syndromes with congenital deafness and hypothyroidism. J. Med. Genet. 10, 235–242 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uziel, A., Gabrion, J., Ohresser, M. & Legrand, C. Effects of hypothyroidism on the structural development of the organ of Corti in the rat. Acta Oto-Laryngol. 92, 469–480 (1981).

    Article  CAS  Google Scholar 

  18. Takeda, K., Sakurai, A., DeGroot, L.J. & Refetoff, S. Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein-coding region of the thyroid hormone receptor beta gene. J. Clin. Endocrinol. Metab. 74, 49–55 (1992).

    CAS  PubMed  Google Scholar 

  19. Takeda, K., Balzano, S., Sakurai, A., DeGroot, L.J. & Refetoff, S. Screening of nineteen unrelated families with generalized resistance to thyroid hormone for known point mutations in the thyroid hormone receptor beta gene and the detection of a new mutation. J. Clin. Invest. 87, 496–502 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Forrest, D., Erway, L.C., Ng, L., Altschuler, R. & Curran, T. Thyroid hormone receptor is essential for development of auditory function. Nature Genet. 13, 354–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Coyle, B. et al. Pendred syndrome (goitre and sensorineural hearing loss) maps to chromosome 7 in the region containing the nonsyndromic deafness gene DFNB4. Nature Genet. 12, 421–423 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Murray, J.C. et al. A comprehensive human linkage map with centimorgan density. Cooperative Human Linkage Center (CHLC). Science 265, 2049–2054 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Sheffield, V.C. et al. A collection of tri- and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum. Mol. Genet. 4, 1837–1844 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Coucke, P. et al. The gene for Pendred syndrome is located between D7S501 and D7S692 in a 1.7-cM region on chromosome 7q. Genomics 40, 48–54 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Gausden, E. et al. Pendred syndrome: evidence for genetic homogeneity and further refinement of linkage. Med. Genet. 34, 126–129 (1997).

    Article  CAS  Google Scholar 

  26. Green, E.D. et al. Systematic generation of sequence-tagged sites for physical mapping of human chromosomes: application to the mapping of human chromosome 7 using yeast artificial chromosomes. Genomics 11, 548–564 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Green, E.D. et al. Integration of physical, genetic and cytogenetic maps of human chromosome 7: isolation and analysis of yeast artificial chromosome clones for 117 mapped genetic markers. Hum. Mol. Genet. 3, 489–501 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Green, E.D. et al. A human chromosome 7 yeast artificial chromosome (YAC) resource: construction, characterization, and screening. Genomics 25, 170–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Bouffard, G.G. et al. A physical map of human chromosome 7: an integrated YAC contig map with average STS spacing of 79 kb. Genome Res. 7, 673–692 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Bouffard, G.G. et al. A collection of 1814 human chromosome 7-specific STSs. Genome Res. 7, 59–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Marra, M.A. et al. High throughput fingerprint analysis of large-insert clones. Genome Res.(in the press).

  32. Hoglund, P. et al. Positional candidate genes for congenital chloride diarrhea suggested by high-resolution physical mapping in chromosome region 7q31. Genome Res. 6, 202–210 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Schuler, G.D. et al. A gene map of the human genome. Science 274, 540–546 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc. Natl. Acad. Sci. USA 88, 261–11265 (1991).

    Google Scholar 

  35. Xu, Y., Mural, R., Shah, M. & Uberbacher, E. Recognizing exons in genomic sequence using GRAIL II. Genet. Eng. 16, 241–253 (1994).

    CAS  Google Scholar 

  36. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Gish, W. & States, D.J. Identification of protein coding regions by database similarity search. Nature Genet. 3, 266–272 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Schweinfest, C.W., Henderson, K.W., Suster, S., Kondoh, N. & Papas, T.S. Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proc. Natl. Acad. Sci. USA 90, 4166–4170 (1993).

    Article  CAS  Google Scholar 

  39. Byeon, M.K. et al. The down-regulated in adenoma (DRA) gene encodes an intestine-specific membrane glycoprotein. Oncogene 12, 387–396 (1996).

    CAS  PubMed  Google Scholar 

  40. Silberg, D.G., Wang, W., Moseley, R.H. & Traber, P.G. The down regulated in adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein. j Biol. Chem. 270, 11897–11902 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Hoglund, P. et al. Mutations of the down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nature Genet. 14, 316–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Kozak, M. Interpreting cDNA sequences: some insights from studies on translation. Mamm. Genome 7, 563–574 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Kozak, M. Regulation of translation in eukaryotic systems. Annu. Rev. Cell Biol. 8, 197–225 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hastbacka, J. et al. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78, 1073–1087 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Rost, B., Casadio, R., Fariselli, P. & Sander, C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 4, 521–533 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weil, D. et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374, 60–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Baldwin, C.T., Hoth, C.F., Amos, J.A., da-Silva, E.G. & Milunsky, A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature 355, 637–638 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Tassabehji, M. et al. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Barker, D.F. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248, 1224–1227 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, X.-Z. et al. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nature Genet. 16, 188–190 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Kelsell, D.P. et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387, 80–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Petit, C. Genes responsible for human hereditary deafness: symphony of a thousand. Nature Genet. 14, 385–391 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Van Camp, G., Willems, P.J. & Smith, R.J.H. Nonsyndromic hearing impairment: unparalleled heterogeneity. Am. J. Hum. Genet. 60, 758–764 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Olson, M.V. A time to sequence. Science 270, 394–396 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Boguski, M., Chakravarti, A., Gibbs, R., Green, E. & Myers, R.M. The end of the beginning: the race to begin human genome sequencing. Genome Res. 6, 771–772 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Herzog, V. Secretion of sulfated thyroglobulin. Eur. J. Cell Biol. 39, 399–409 (1986).

    CAS  PubMed  Google Scholar 

  58. Baumeister, F.A.M. & Herzog, V. Sulfation of thyroglobulin: a ubiquitous modification in vertebrates. Cell Tissue Res. 252, 349–358 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Robertson, N.G., Khetarpal, U., Gutierrez-Espeleta, G.A., Bieber, F.R. & Morton, C.C. Isolation of novel and known genes from a human fetal cochlear cDNA library using subtractive hybridization and differential screening. Genomics 23, 42–50 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Baldwin, C.T. et al. Linkage of congenital, recessive deafness (DFNB4) to chromosome 7q31 and evidence for genetic heterogeneity in the Middle Eastern Druze population. Hum. Mol. Genet. 4, 1637–1642 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Bassam, B.J., Caetano-Anolles, G. & Gresshoff, P.M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196, 80–83 (1991).

    CAS  Google Scholar 

  62. Boguski, M.S. & Schuler, G.D. ESTablishing a human transcript map. Nature Genet. 10, 369–371 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, J. & Madden, T.L. PowerBLAST: a new network BLAST application for interactive or automated sequence analysis and annotation. Genome Res. 7, 649–656 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Frohman, M.A., Dush, M.K. & Martin, G.R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998–9002 (1988).

    Article  CAS  Google Scholar 

  65. Benson, D.A., Boguski, M.S., Lipman, D.J. & Ostell, J., Nucleic Acids Res. 25, 1–6 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stoesser, G., Sterk, P., Tuli, M.A., Stoehr, P.J. & Cameron, G.N. The EMBL nucleotide sequence database. Nucleic Acids Res. 25, 7–14 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. George, D.G. et al. The protein information resource (PIR) and the PIR-international protein sequence database. Nucleic Acids Res. 25, 24–28 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL. Nucleic Acids Res. 25, 31–36 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Barton, G.J. ALSCRIPT: a tool to format multiple sequence alignments.Protein Eng. 6, 37–40 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Nielsen, H., Engelbrecht, J., Brunak, S. & & von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Hansen, J.E. et al. Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAcpolypeptide N-acetylgalactosaminyltransferase. Biochem. J. 308, 801–813 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rost, B., Fariselli, P. & Casadio, R. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 5, 1704–1718 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Beaudet, A.L. & Tsui, L.-C. A suggested nomenclature for designating mutations.Hum. Mutat. 2, 245–248 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benjamin Glaser, Val C. Sheffield or Eric D. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Everett, L., Glaser, B., Beck, J. et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17, 411–422 (1997). https://doi.org/10.1038/ng1297-411

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1297-411

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing