Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Periodic gene expression program of the fission yeast cell cycle

Abstract

Cell-cycle control of transcription seems to be universal, but little is known about its global conservation and biological significance. We report on the genome-wide transcriptional program of the Schizosaccharomyces pombe cell cycle, identifying 407 periodically expressed genes of which 136 show high-amplitude changes. These genes cluster in four major waves of expression. The forkhead protein Sep1p regulates mitotic genes in the first cluster, including Ace2p, which activates transcription in the second cluster during the M-G1 transition and cytokinesis. Other genes in the second cluster, which are required for G1-S progression, are regulated by the MBF complex independently of Sep1p and Ace2p. The third cluster coincides with S phase and a fourth cluster contains genes weakly regulated during G2 phase. Despite conserved cell-cycle transcription factors, differences in regulatory circuits between fission and budding yeasts are evident, revealing evolutionary plasticity of transcriptional control. Periodic transcription of most genes is not conserved between the two yeasts, except for a core set of 40 genes that seem to be universally regulated during the eukaryotic cell cycle and may have key roles in cell-cycle progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phaseogram of all periodically expressed genes identified in this study.
Figure 2: Grouping of periodically expressed genes into four main clusters.
Figure 3: Transcriptional regulation of genes in clusters 1 and 2.
Figure 4: Identification of potential regulatory promoter motifs.
Figure 5: Cell-cycle transcriptional networks in fission and budding yeasts.

Similar content being viewed by others

References

  1. Breeden, L.L. Periodic transcription: a cycle within a cycle. Curr. Biol. 13, R31–R38 (2003).

    Article  CAS  Google Scholar 

  2. Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  Google Scholar 

  3. Cho, R.J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).

    Article  CAS  Google Scholar 

  4. Laub, M.T., McAdams, H.H., Feldblyum, T., Fraser, C.M. & Shapiro, L. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144–2148 (2000).

    Article  CAS  Google Scholar 

  5. Cho, R.J. et al. Transcriptional regulation and function during the human cell cycle. Nat. Genet. 27, 48–54 (2001).

    Article  CAS  Google Scholar 

  6. Whitfield, M.L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

    Article  CAS  Google Scholar 

  7. Cooper, S. & Shedden, K. Microarray analysis of gene expression during the cell cycle. Cell Chrom. 2, 1 (2003).

    Article  Google Scholar 

  8. Zhu, G. et al. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406, 90–94 (2000).

    Article  CAS  Google Scholar 

  9. Simon, I. et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001).

    Article  CAS  Google Scholar 

  10. Iyer, V.R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001).

    Article  CAS  Google Scholar 

  11. Horak, C.E. et al. Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev. 16, 3017–3033 (2002).

    Article  CAS  Google Scholar 

  12. Lee, T.I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  CAS  Google Scholar 

  13. Futcher, B. Transcriptional regulatory networks and the yeast cell cycle. Curr. Opin. Cell Biol. 14, 676–683 (2002).

    Article  CAS  Google Scholar 

  14. Wyrick, J.J. & Young, R.A. Deciphering gene expression regulatory networks. Curr. Opin. Genet. Dev. 12, 130–136 (2002).

    Article  CAS  Google Scholar 

  15. MacNeill, S.A. & Nurse, P. Cell cycle control in fission yeast. in The Molecular and Cellular Biology of the Yeast Saccharomyces: Life Cycle and Cell Biology (eds. Pringle, J.R., Broach, J., & Jones, E.W.) 697–763 (Cold Spring Harbor Press, Cold Spring Harbor, New York, USA, 1997).

    Google Scholar 

  16. Heckman, D.S. et al. Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133 (2001).

    Article  CAS  Google Scholar 

  17. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).

    Article  CAS  Google Scholar 

  18. Lyne, R. et al. Whole-genome microarrays of fission yeast: characteristics, accuracy, reproducibility, and processing of array data. BMC Genomics 4, 27 (2003).

    Article  Google Scholar 

  19. Anderson, M. et al. plo1+ regulates gene transcription at the M-G1 interval during the fission yeast mitotic cell cycle. EMBO J. 21, 5745–5755 (2002).

    Article  CAS  Google Scholar 

  20. Watanabe, T. et al. Comprehensive isolation of meiosis-specific genes identifies novel proteins and unusual non-coding transcripts in Schizosaccharomyces pombe. Nucl. Acids Res. 29, 2327–2337 (2001).

    Article  CAS  Google Scholar 

  21. Chen, E.S., Saitoh, S., Yanagida, M. & Takahashi, K. A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Mol. Cell 11, 175–187 (2003).

    Article  CAS  Google Scholar 

  22. Takahashi, K., Chen, E.S. & Yanagida, M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215–2219 (2000).

    Article  CAS  Google Scholar 

  23. Tasto, J.J., Morrell, J.L. & Gould, K.L. An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation. J. Cell Biol. 160, 1093–1103 (2003).

    Article  CAS  Google Scholar 

  24. Woollard, A., Basi, G. & Nurse, P. A novel S phase inhibitor in fission yeast. EMBO J. 15, 4603–4612 (1996).

    Article  CAS  Google Scholar 

  25. Chen, D. et al. Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell 14, 214–229 (2003).

    Article  CAS  Google Scholar 

  26. Shiozaki, K. & Russell, P. Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378, 739–743 (1995).

    Article  CAS  Google Scholar 

  27. Zilahi, E., Salimova, E., Simanis, V. & Sipiczki, M. The S. pombe sep1 gene encodes a nuclear protein that is required for periodic expression of the cdc15 gene. FEBS Lett. 481, 105–108 (2000).

    Article  CAS  Google Scholar 

  28. Koranda, M., Schleiffer, A., Endler, L. & Ammerer, G. Forkhead-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature 406, 94–98 (2000).

    Article  CAS  Google Scholar 

  29. Kumar, R., Reynolds, D.M., Shevchenko, A., Goldstone, S.D. & Dalton, S. Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr. Biol. 10, 896–906 (2000).

    Article  CAS  Google Scholar 

  30. Pic, A. et al. The forkhead protein Fkh2 is a component of the yeast cell cycle transcription factor SFF. EMBO J. 19, 3750–3761 (2000).

    Article  CAS  Google Scholar 

  31. Alvarez, B., Martínez, A.C., Burgering, B.M. & Carrera, A.C. Forkhead transcription factors contribute to execution of the mitotic programme in mammals. Nature 413, 744–747 (2001).

    Article  CAS  Google Scholar 

  32. Martín-Cuadrado, A.B., Dueñas, E., Sipiczki, M., Vázquez de Aldana, C.R. & Del Rey, F. The endo-b-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J. Cell Sci. 116, 1689–1698 (2003).

    Article  Google Scholar 

  33. Pierrou, S., Hellqvist, M., Samuelsson, L., Enerback, S. & Carlsson, P. Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. EMBO J. 13, 5002–5012 (1994).

    Article  CAS  Google Scholar 

  34. Horie, S. et al. The Schizosaccharomyces pombe mei4+ gene encodes a meiosis-specific transcription factor containing a forkhead DNA-binding domain. Mol. Cell. Biol. 18, 2118–2129 (1998).

    Article  CAS  Google Scholar 

  35. Mata, J., Lyne, R., Burns, G. & Bähler, J. The transcriptional program of meiosis and sporulation in fission yeast. Nat. Genet. 32, 143–147 (2002).

    Article  CAS  Google Scholar 

  36. Lowndes, N.F., McInerny, C.J., Johnson, A.L., Fantes, P.A. & Johnston, L.H. Control of DNA synthesis genes in fission yeast by the cell-cycle gene cdc10+. Nature 355, 449–453 (1992).

    Article  CAS  Google Scholar 

  37. Lowndes, N.F., Johnson, A.L., Breeden, L. & Johnston, L.H. SWI6 protein is required for transcription of the periodically expressed DNA synthesis genes in budding yeast. Nature 357, 505–508 (1992).

    Article  CAS  Google Scholar 

  38. McInerny, C.J., Kersey, P.J., Creanor, J. & Fantes, P.A. Positive and negative roles for cdc10 in cell cycle gene expression. Nucl. Acids Res. 23, 4761–4768 (1995).

    Article  CAS  Google Scholar 

  39. Wynne, J. & Treisman, R. SRF and MCM1 have related but distinct DNA binding specificities. Nucl. Acids Res. 20, 3297–3303 (1992).

    Article  CAS  Google Scholar 

  40. McInerny, C.J., Partridge, J.F., Mikesell, G.E., Creemer, D.P. & Breeden, L.L. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes Dev. 11, 1277–1288 (1997).

    Article  CAS  Google Scholar 

  41. MacKay, V.L., Mai, B., Waters, L. & Breeden, L.L. Early cell cycle box-mediated transcription of CLN3 and SWI4 contributes to the proper timing of the G1-to-S transition in budding yeast. Mol. Cell. Biol. 21, 4140–4148 (2001).

    Article  CAS  Google Scholar 

  42. Matsumoto, S. & Yanagida, M. Histone gene organization of fission yeast: a common upstream sequence. EMBO J. 4, 3531–3538 (1985).

    Article  CAS  Google Scholar 

  43. Carr, A.M. et al. Analysis of a histone H2A variant from fission yeast: evidence for a role in chromosome stability. Mol. Gen. Genet. 245, 628–635 (1994).

    Article  CAS  Google Scholar 

  44. Lydall, D., Ammerer, G. & Nasmyth, K. A new role for MCM1 in yeast: cell cycle regulation of SW15 transcription. Genes Dev. 5, 2405–2419 (1991).

    Article  CAS  Google Scholar 

  45. McBride, H.J., Yu, Y. & Stillman, D.J. Distinct regions of the Swi5 and Ace2 transcription factors are required for specific gene activation. J. Biol. Chem. 274, 21029–21036 (1999).

    Article  CAS  Google Scholar 

  46. Nasmyth, K. At the heart of the budding yeast cell cycle. Trends Genet. 12, 405–412 (1996).

    Article  CAS  Google Scholar 

  47. Morgan, D.O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    Article  CAS  Google Scholar 

  48. Yang, I.V. et al. Within the fold: assessing differential expression measures and reproducibility in microarray assays. Genome Biol. 3, research0062 (2002).

  49. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

  50. Vilo, J., Brazma, A., Jonassen, I., Robinson, A. & Ukkonen, E. Mining for putative regulatory elements in the yeast genome using gene expression data. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8, 384–394 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Wood and the developers of S. pombe GeneDB for providing this valuable database and for information on orthologs; D. Vetrie, N. Nikdaidou-Katsaridou and A. Ivens for help with microarray printing; I. Hagan and L. Vardy for advice on elutriation; C. Heichinger and M. Hollyoake for help with FACS analyses; M. Sipiczki and B. Morgan for strains; E. Falkenauer and A. Marchand for help with ArrayMiner; S. Watt for technical support; P. Rocca-Serra and E. Holloway for help with ArrayExpress; R. Pettett for developing the gene expression viewer; J. Vilo for help in using SPEXS software and J. Ayté for comments on the manuscript. We apologize to colleagues for not citing all relevant papers because of space constraints; additional references are given in Supplementary Tables 1, 4 and 7 online. This research was supported by Cancer Research UK (P.N. and J.B.) and the European commission TEMBLOR grant (A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Bähler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Various cell cycle events measured for two synchronized experiments. (PDF 459 kb)

Supplementary Table 1

Genes previously reported as cell cycle regulated. (PDF 199 kb)

Supplementary Table 2

Periodic genes with characterized functions. (PDF 149 kb)

Supplementary Table 3

List of 407 genes periodically expressed during the cell cycle. (PDF 998 kb)

Supplementary Table 4

Enrichment for Gene Ontology (GO) terms among periodically expressed genes. (PDF 107 kb)

Supplementary Table 5

Potential regulatory promoter motifs. (PDF 122 kb)

Supplementary Table 6

Overlap of periodic genes between fission and budding yeasts. (PDF 116 kb)

Supplementary Table 7

S. pombe strains used in this study. (PDF 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rustici, G., Mata, J., Kivinen, K. et al. Periodic gene expression program of the fission yeast cell cycle. Nat Genet 36, 809–817 (2004). https://doi.org/10.1038/ng1377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1377

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing