Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutagenic Insertion and Chromosome Engineering Resource (MICER)

Abstract

Embryonic stem cell technology revolutionized biology by providing a means to assess mammalian gene function in vivo. Although it is now routine to generate mice from embryonic stem cells, one of the principal methods used to create mutations, gene targeting, is a cumbersome process. Here we describe the indexing of 93,960 ready-made insertional targeting vectors from two libraries. 5,925 of these vectors can be used directly to inactivate genes with an average targeting efficiency of 28%. Combinations of vectors from the two libraries can be used to disrupt both alleles of a gene or engineer larger genomic changes such as deletions, duplications, translocations or inversions. These indexed vectors constitute a public resource (Mutagenic Insertion and Chromosome Engineering Resource; MICER) for high-throughput, targeted manipulation of the mouse genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Indexed targeting vectors displayed on Ensembl under the DAS source MICER.
Figure 2: MICER vectors can be used to disrupt genes, to engineer deletions and inversions and to achieve double targeting.
Figure 3: MICER vectors target the genome with an average efficiency of 28%.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  Google Scholar 

  2. Collins, F.S., Green, E.D. & Guyer, M.S. A vision for the future of genomics research. Nature 422, 835–847 (2003).

    Article  CAS  Google Scholar 

  3. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  Google Scholar 

  4. Bradley, A., Evans, M., Kaufman, M.H. & Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256 (1984).

    Article  CAS  Google Scholar 

  5. Thomas, K.R. & Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  6. Smithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A. & Kucherlapati, R.S. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230–234 (1985).

    Article  CAS  Google Scholar 

  7. Bult, C.J. et al. The Mouse Genome Database (MGD): integrating biology with the genome. Nucleic Acids Res. 32, D476–D481 (2004).

    Article  CAS  Google Scholar 

  8. Skarnes, W.C. et al. A public gene trap resource for mouse functional genomics. Nat. Genet. 36, 543–544 (2004).

    Article  CAS  Google Scholar 

  9. Gossler, A., Joyner, A.L., Rossant, J. & Skarnes, W.C. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244, 463–465 (1989).

    Article  CAS  Google Scholar 

  10. Hasty, P., Crist, M., Grompe, M. & Bradley, A. Efficiency of insertion versus replacement vector targeting varies at different chromosomal loci. Mol. Cell Biol. 14, 8385–8390 (1994).

    Article  CAS  Google Scholar 

  11. Zheng, B., Mills, A.A. & Bradley, A. A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice. Nucleic Acids Res. 11, 2354–2360 (1999).

    Article  Google Scholar 

  12. Mills, A.A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 32, 708–713 (1999).

    Article  Google Scholar 

  13. te Riele, H., Maandag, E.R., Clarke, A., Hooper, M. & Berns, A. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348, 649–651 (1990).

    Article  CAS  Google Scholar 

  14. Yu, Y. & Bradley, A. Engineering chromosomal rearrangements in mice. Nat. Rev. Genet. 2, 780–790 (2001).

    Article  CAS  Google Scholar 

  15. Ramirez-Solis, R., Liu, P. & Bradley, A. Chromosome engineering in mice. Nature 378, 720–724 (1995).

    Article  CAS  Google Scholar 

  16. Smith, A.J. et al. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat. Genet. 9, 376–385 (1995).

    Article  CAS  Google Scholar 

  17. Birney, E. et al. Ensembl 2004. Nucleic Acids Res. 32, D468–D470 (2004).

    Article  CAS  Google Scholar 

  18. Testa, G. et al. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat. Biotechnol. 21, 443–447 (2003).

    Article  CAS  Google Scholar 

  19. Liu, P., Jenkins, N.A. & Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).

    Article  CAS  Google Scholar 

  20. Kucera, G.T., Bortner, D.M. & Rosenberg, M.P. Overexpression of an Agouti cDNA in the skin of transgenic mice recapitulates dominant coat color phenotypes of spontaneous mutants. Dev Biol. 173, 162–173 (1996).

    Article  CAS  Google Scholar 

  21. Yokoyama, T. et al. Conserved cysteine to serine mutation in tyrosinase is responsible for the classical albino mutation in laboratory mice. Nucleic Acids Res. 18, 7293–7298 (1990).

    Article  CAS  Google Scholar 

  22. Zheng, B., Vogel, H., Donehower, L.A. & Bradley, A. Visual genotyping of a coat color tagged p53 mutant mouse line. Cancer Biol. Ther. 1, 433–435 (2002).

    Article  CAS  Google Scholar 

  23. Nishijima, I., Mills, A., Qi, Y., Mills, M. & Bradley, A. Two new balancer chromosomes on mouse chromosome 4 to facilitate functional annotation of human chromosome 1p. Genesis 36, 142–148 (2003).

    Article  CAS  Google Scholar 

  24. Walz, K. et al. Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance. Mol. Cell. Biol. 23, 3646–3655 (2003).

    Article  CAS  Google Scholar 

  25. Klysik, J., Dinh, C. & Bradley, A. Two new mouse chromosome 11 balancers. Genomics 83, 303–310 (2004).

    Article  CAS  Google Scholar 

  26. Ning, Z., Cox, A.J. & Mullikin, J.C. SSAHA: a fast search method for large DNA databases. Genome Res. 11, 1725–1729 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W.C. Skarnes, members of the laboratories of W.C. Skarnes and A.B. and the Sanger informatics team for discussions and assistance. D.J.A and L.v.d.W. were supported by a National Health and Medical Research Council CJ Martin fellowship and a National Health and Medical Research Council CJ Martin/RG Menizes fellowship, respectively. J.J. is a recipient of a NWO Genomics Fellowship from the Netherlands Organization for Scientific Research. This work was supported by the Wellcome Trust (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Bradley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Targeting frequency data for MICER vectors. (XLS 13 kb)

Supplementary Table 2

Sentinel genes list. (XLS 1040 kb)

Supplementary Table 3

MICER gene disruption alleles. (XLS 1328 kb)

Supplementary Table 4

Restriction enzymes that can be used to linearize MICER vectors. (PDF 3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, D., Biggs, P., Cox, T. et al. Mutagenic Insertion and Chromosome Engineering Resource (MICER). Nat Genet 36, 867–871 (2004). https://doi.org/10.1038/ng1388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing